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Abstract

We consider the evaluation of two financial risk measures, Value at Risk and Expected Shortfall.

Our analysis is performed in a Bayesian fashion where we adopt a model-based approach. We employ

the Quick Evaluation of Risk using Mixture of t approximation algorithm (QERMit) of Hoogerheide

and van Dijk (2010) due to its accuracy and efficiency, and we upgrade its basic framework in two

ways. First, we replace the originally used posterior approximation algorithm with a superior, flexible

technique. We report a substantial gain in the accuracy and the precision of estimates in our empirical

application based on the daily S&P 500 returns. Second, we extend the basic QERMit framework

to allow for latent variables in the underlying model. In this way, the developed technique can be

applied to the class of the parameter driven models. We illustrate the procedure using a series of

daily IBM returns. Noticeably, all the employed methods are based on importance sampling, which

allows for fast computations and is not subject to convergence problem inherent to the alternative

Markov Chain Monte Carlo methods.

Keywords: Bayesian inference; Value at Risk; Expected Shortfall; Efficient importance sampling;

mixture of Student’s t distributions; Nonlinear state space models.
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1 Introduction

We consider the evaluation of two popular financial risk measures, Value at Risk and Expected Shortfall.

The focus is laid on the market risk related to changes in the portfolio value due to the fluctuations of

market factors. Our analysis is performed in a Bayesian fashion, where the object of interest is a posterior

predictive density. We adopt a model-based approach, which means that the estimation of the dynamic

features of the volatility and of the implied risk measures is performed given a chosen model. Such an

approach is considered as a standard in the literature as it provides a more systematic analysis compared

to other ad hoc procedures (cf. Jungbacker and Koopman, 2009 and Hoogerheide and van Dijk, 2010).

The key feature of the model-based approach is an explicit specification of the time-varying properties

of the volatility, including its conditional distribution, using a parametric model. We employ the Quick

Evaluation of Risk using Mixture of t approximation algorithm (QERMit) of Hoogerheide and van Dijk

(2010) due to the accuracy of the estimates it provides and the efficiency of the computations it is based

on.

The original QERMit method heavily relies on two elements: the algorithm used to approximate the

candidate posterior density and the class of models it admits. As the former the authors take the Adaptive

Mixture of t (AdMit) method of Hoogerheide et al. (2007). AdMit uses a mixture of the multivariate

Student’s t distributions to approximate (a kernel of) a target distribution which can be highly non-

elliptical (e.g. multimodal or skewed). The final mixture is constructed iteratively, by adding consecutive

components to the previous mixture starting with a single multivariate Student’s t density. Despite its

relatively good performance, the AdMit method suffers from two serious shortcomings. First, adding of

a new component is carried out without updating of the parameters of the components in the current

mixture, which may lead to a faulty location of the new component. Second, the number of degrees of

freedom is fixed to 1 for all the components1. Together, these limitations make AdMit a rather difficult

tool to work with, often yielding not fully reliable results.

The latter ingredient of the QERMit approach, i.e. the class of models which it can be applied to, is

restricted to the observation driven models (cf. Cox, 1981). These models gained a substantial popularity

due to their simple estimation. In these models parameters are stochastic processes, which are perfectly

predictable given the current observation set, so that likelihood function is available in a closed-form.

Typical representatives of this class are variants of the GARCH model stemming from the works of Engle

(1982) and Bollerslev (1986). A straightforward estimation may come at a price of an inferior out-of-

sample performance as compared to more complex models2. Given out main focus on the predictive

densities, it is crucial to allow for models which potentially can perform better in terms of yielding more

accurate forecasts.

In this thesis we upgrade the basic QERMit algorithm by removing the both above-mentioned limitations.

The exposition is carried out in two steps. First, we implement the QERMit method where we replace

AdMit with a superior approximation technique, the Mixture of t by Importance Sampling weighted

Expectation Maximization (MitISEM) algorithm of Hoogerheide et al. (2012). Not only is MitISEM a

more flexible tool for constructing an approximation to a given distribution of interest, but also it is

computationally more efficient. MitISEM allows for a simultaneous adjusting of the parameters of all

mixture components, including the number of the degrees of freedom. This proves out to be crucial for

the approximation accuracy. We compare the performance of the modified QERMit approach based on

MitISEM with the one of the original QERMit method based on AdMit. Moreover, we contrast the

1In our application we modified this restriction allowing for the number of the degrees of freedom to be specified prior
to the computations. However, we did not alter the main assumption on the number of degrees of freedom, i.e. that they
remain fixed during the program run.

2For instance, Hol and Koopman (2002) find that without the information on intraday volatility, there is room for
improvement of the GARCH-based forecasts. This, however, requires using of different classes of models.
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results generated with both versions of QERMit with these from an unsophisticated evaluation, called

the direct approach.

Second, we extend the basic QERMit framework to allow for the latent variables in the underlying model,

so that the technique can be applied to the class of the parameter driven models. A fundamental example

of a model from this class is the Stochastic Volatility (SV) model (cf. Taylor, 1986, Harvey et al., 1994).

In the parameter driven models the unobserved volatility process is subject to idiosyncratic innovations,

resulting in two error processes driving the observations dynamics. In consequence, both the in-sample

and the out-of-sample model performance is likely to be ameliorated as compared to the one of the

observation driven models. Incorporating of an unobserved state in the model poses, however, substantial

computational difficulties. The reason for the practical problems is that, in general, the likelihood function

is not given in a closed form in these models. To overcome this obstacle, numerous approximative methods

for inference have been proposed3. We adopt the Numerically Accelerated Importance Sampling (NAIS)

method of Koopman et al. (2015), which has been proven to be numerically more efficient than the

competing approximation techniques.

We stress the significance of the importance sampling (IS) as the main sampling tool used in our study.

These methods have a long history in statistics, being considered already in Kahn and Marshal (1953),

Marshall (1956) and Hammersley and Handscomb (1964). Their introduction to Bayesian econometrics

is due to Kloek and van Dijk (1978). Not only underlie the IS techniques the methods used in the

computations, MitISEM and NAIS, but also serve to obtain the ultimate VaR and ES estimates. An

alternative class of algorithms is provided by the MCMC methods, which have been intensively used for

computations in various fields, including time series econometrics. We opt for the IS-based techniques

for several reasons. First, they are not subject to the chain convergence problem, inherent to the MCMC

algorithms (cf. Gelman, 1995). Second, they easily allow for parallelisation, which substantially boosts

the speed of computations. Third, a substantial interest has recently been devoted to the on-line inference

problems, which can be efficiently approached using via the Sequential Monte Carlo methods based on

IS (cf. Doucet et al., 2001, for a comprehensive study).

The outline of the paper is as follows. Section 2 defines the two risk measures of interest and presents

the Bayesian approach to the financial risk estimation based on IS. In Section 3 we discuss the QERMit

technique, already adopting a generalised perspective. The key methods used in our analysis, MitISEM

and NAIS, are described in Section 4. Section 5 presents our first contribution, i.e. the replacement of

AdMit as the posterior approximation algorithm in QERMit by MitISEM, and illustrates the achieved

gain in the risk estimation accuracy using a series of daily S&P 500 returns. The extension of the

allowed model class to the parameter driven models is discussed in Section 6, where we also indicate

some numerical problems which we encountered in the application of our novel method to a series of IBM

stock daily returns. Section 7 concludes.

2 Bayesian Risk Estimation

A correct and precise evaluation of the financial risk is without doubts desirable, not to say necessary,

for all types of agents active in the global economy. In particular, the development of the derivatives

markets, relying on complex index or stock based instruments, calls for an accurate estimation of the

market risk4. The recent experiences from the Great Recession clearly show what the consequences of

3In the context of the SV model, Harvey et al. (1994) suggested the so called Quasi-Maximum Likelihood approach,
where the estimation procedure is based on the approximative linear, Gaussian state space model. Alternative approximative
methods are based on the numerical integration of the likelihood function, as in Kitagawa (1987) and Fridman and Harris
(1998). A vast strand in the literature has been devoted to Markov chain Monte Carlo (MCMC) estimation, cf. Jacquier
et al. (1994) and Kim et al. (1998). Finally, the methods based on Monte Carlo likelihood evaluation in the context of the
SV model were developed in Danielsson (1994) and Sandmann and Koopman (1998).

4We define various types of risk below
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the financial risk underestimation might be, with banks bankruptcies, liquidity spirals and the overall

financial distress being just the first few to mention. On the other hand, an excessively prudent approach

to risk evaluation is likely to prohibit investors from exploring profitable asset allocation opportunities.

This explains why the financial risk estimation stands in the centre of attention of a vast strand of the

econometric literature.

In addition, in the constantly changing economic environment, often driven by market sentiments and

beliefs about the current and the future state of the system, it is necessary to be able to promptly update

the forecasts and to use the “expert knowledge” (external to the model) in predictions. Bayesian analysis

satisfies these two requirements, because it allows for incorporating of the prior beliefs, as well as it for a

sequential updating of the estimates when new data becomes available. The key aspect of the Bayesian

estimation is that the observations are treated as fixed, while all the unobserved elements (such as model

parameters, latent states or the future observations) are treated as random variables. Hence, the Bayesian

approach, with its focus on the joint posterior (predictive) densities, is particularly suited for the financial

risk evaluation.

2.1 Risk Measurement

There are different types of financial risk, and for each of them different tools for the quantitative mea-

surement have been developed. As discussed in Jorion (2007), the two main risk categories are the market

risk and the credit risk. Market risk concerns changes in the investment value in response to the moves

of the market risk factors such as stock prices, interest rates and foreign exchange rates. Credit risk, also

known as default risk, is related to the losses occurring due to a default of the transaction’s counterparty,

which is mainly considered in case of bond evaluation. Other types of risk include operational risk or

liquidity risk. In this thesis, we focus on the first category, i.e. the market risk. Two standard measures

used in this context are Value at Risk (VaR) and Expected Shortfall (ES), which we discuss below.

2.1.1 Value at Risk and Expected Shortfall

Value at Risk can be intuitively understood as an answer to a question about the worst loss within

a certain time horizon from a probabilist’s perspective, i.e. given a specified confidence level. More

precisely, VaR is the quantile of the predictive distribution of losses over the horizon of interest. An

important example of VaR is the one accepted by the Basel Committee (Basel Committee on Banking

Supervision, 1995) and defined as the 99% quantile (1% lower tail) of a loss distribution for a two-week

(10-day-ahead) horizon. Following Jorion (2007), we formally define the 100α% VaR as the 100(1−α)%

quantile of the percentage return’s distribution, i.e.

100α%V aR ≡ inf {x ∈ R : P[X ≤ x] ≥ α} ,

where X is a random variable of interest.

There are several advantages of using the VaR as a risk measure, such as its conceptual simplicity, a

possibility of its estimation via different methods and the fact that nowadays it is considered as a standard

tool in risk management. From a theoretical point of view, however, it has some undesirable properties.

First of all, in general it is not a coherent risk measure5, since it fails to be subadditive. This might

negatively affect an investor’s propensity to diversification. Another issue with the VaR is that because it

is barely a quantile, it gives no insight into the properties of the tail it determines. Hence, an alternative

5Artzner et al. (1999) axiomatise the concept of coherent risk measure using four properties, desirable for a measure
of the financial risk. These are: monotonicity, invariance to translation, homogeneity and subadditivity. In particular, the
interpretation of the latter is that merging of portfolios shall not increase the overall risk.
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risk measure has been developed, which summarises the losses exceeding the VaR, i.e. the Expected

Shortfall (cf. McNeil and Frey, 2000). The ES answers the question, what loss can be expected, given

that it overreaches the VaR. Formally, the 100α% ES is the conditional expected loss given that the loss

exceeds 100α% VaR, i.e.

100α%ES ≡ E
[
X|X < 100α%V aR

]
.

In contrast to the VaR, the ES subadditive, which allows for a conservative risk assessment of a portfolio.

Taking into account the popularity of the VaR and the advantages of the ES over the VaR, we consider

both risk measures in the thesis.

2.1.2 Direct Estimation

Below, we describe the direct approach to the Bayesian estimation of the risk measures defined in the

previous Subsection. Suppose we have a sample of n historical logreturns, y = {yt}nt=1, and let θ denote

the vector of all the model parameters6. We are interested in the h-day-ahead forecast of the 100α%

VaR or ES, which are determined by the profit-loss function PL, mapping the h-vector of the future log-

returns y∗ = {yn+1, . . . , yn+h} into a scalar. Because we consider 100× the logreturns, the PL function

can be defined as

PL(y∗) ≡ PL(yn+1, . . . , yn+h) = 100

[
exp

(
h∑
s=1

yn+s/100

)
− 1

]
. (2.1)

Obviously, it is positive for profits and negative for losses. The forecasting density of y∗ is given by

p(y∗|θ, y). A straightforward way to estimate the h-day-ahead in a Bayesian fashion is to proceed as

follows.

1. Simulate θ(i), i = 1, . . . , N , a set of parameter draws, from the posterior distribution of the param-

eters, p(θ|y).

2. Generate y∗(i), i = 1, . . . , N , the corresponding paths of the future logreturns, given the parameter

draws θ(i), i = 1, . . . , N , and observations y, i.e.

y∗(i) ∼ p(y∗|θ(i), y), i = 1, . . . , N.

3. Compute PL(y∗(i)), i = 1, . . . , N , the corresponding values of the profit-loss function.

4. Sort the values of the profit-loss function ascendingly, denoting the resulting permutation PL(j) :=

PL(y∗(j)), j = 1, . . . , N .

5. Compute the 100α% VaR and ES estimates as

V̂ aRDA = PL((1−α)N), (2.2)

ÊSDA =
1

(1− α)N

(1−α)N∑
j=1

PL(j). (2.3)

The meaning of formulae (2.2) and (2.3) is straightforward. The 100α% VaR is estimated as the (1−α)N

lowest profit-loss value. Then, the corresponding ES is obtained by averaging the profit-loss values which

do not exceed the computed VaR.

6Which may also include the latent state variables.
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Although conceptually lucid, the direct approach is clearly inefficient. Because one is ultimately interested

in the estimation of tail events, it is suboptimal to mainly focus on the “complement of the tail” (i.e. the

non-extreme events) and sample from the tail only occasionally. Given the simulated sample of length N ,

only a small subsample of (1−α)N draws is used in the estimation, which negatively affect the precision

of the estimates. Consequently, if one wishes to obtain a certain, high level of precision, a substantial

increase in the number of draws is required. To overcome this problem, Hoogerheide and van Dijk (2010)

developed the VaR and ES estimation method based on importance sampling. Their approach focuses

specifically on the so-called high-loss subspace, which is in line with the theoretical result on the optimal

sampling design of Geweke (1989). The next two Sections provide the discussion of the fundamentals of

this methodology.

2.2 Importance Sampling Estimation

As discussed in Subsection 2.1.2, to overcome the inefficiency of the direct approach to VaR and ES

estimation, Hoogerheide and van Dijk (2010) suggested a superior method based on importance sampling.

This approach provides a focus on an important part of the posterior distribution, which is obtained first,

by an appropriate weighting of draws, and second, by generating them from an optimal, tail-focused

density. Before explaining the details of the method in Subsection 2.2.2, we briefly recall the principles

of the IS estimation in Subsection 2.2.1. The discussion of the second question, i.e. the construction of

the optimal importance density, is provided in Section 2.3.

2.2.1 IS Principles

Let X and Y be random variables, where X takes values in X ⊂ Rd. For simplicity assume that the

joint distribution of X and Y allows for the joint density p(x, y). We will denote by p(·|·) and p(·)
the conditional and marginal densities, respectively. Suppose we are interested in estimation of the

(conditional) mean of an arbitrary measurable function of X, f : X → R, given by

f̄ = E [f(X)|Y ]

=

∫
f(x)p(x|y)dx. (2.4)

If one could sample directly from p(x|y), the Monte Carlo (MC) estimate (2.4) would be given by

straightforward expression

f̂ =
1

N

N∑
i=1

f(x(i)), (2.5)

where x(1), . . . , x(N) are independent draws from p(x|y). By the Strong Law of Large Numbers, (2.5) is

strongly consistent, while by the Central Limit Theorem it is asymptotically normal, provided that the

variance Varpf(X) exists.

However, it is typically difficult to sample directly from p(x|y), therefore in practice one usually resorts to

drawing from the so called importance density q(xt|yt) with the support including the one of the density

of interest p(x|y). It is assumed the sampling from q(xt|yt) is relatively easy and inexpensive. This

method of simulation based estimation is called importance sampling (IS). Below we present the basic

idea behind this MC method.
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To start with, notice that (2.4) can be expressed using q(x|y) in the following way

f̄ =

∫
f(x)

p(x|y)

q(x|y)
q(x|y)dx

= Eq
[
f(X)

p(X|Y )

q(X|Y )

]
= Eq [f(X)W (X,Y )] , (2.6)

where Eq stands for expectation with respect to density q and

W (x, y) =
p(x|y)

q(x|y)
(2.7)

is known as the importance weight function. Notice, that since the importance weight function is defined

as the likelihood ratio, it is the Radon–Nikodým derivative of the true distribution p(·) with respect to

the importance distribution q(·). Generally, it depends on x and y, however, in the remaining part of the

work we skip the arguments for notational convenience. Hence, with some abuse of notation, we will use

the same symbols to denote the weight functions as function of random variables and of real numbers.

Since the joint density factorises as p(x, y) = p(x|y)p(y), one can express (2.7) as

W =
1

p(y)

p(x, y)

q(x|y)

=
1

p(y)
w, (2.8)

with w = p(x, y)/q(x|y), so that W is w corrected for the (unconditional) observation density. Then,

(2.6) becomes

f̄ =
1

p(y)
Eq [f(X)w] , (2.9)

Notice, that by taking f ≡ 1 one can obtain from (2.9) that

Eq [w] = p(y),

which implies that (2.9) can be rewritten as follows

f̄ =
Eq [f(X)w]

Eq [w]
. (2.10)

Next, we can estimate (2.10) using a random sample x(1), . . . , x(N) drawn from the importance distribu-

tion q(x|y). The required estimate has the form

f̂ =
N−1

∑N
i=1 f(x(i))w(i)

N−1
∑N
i=1 w

(i)

=

∑N
i=1 f(x(i))w(i)∑N

i=1 w
(i)

(2.11)

with

w(i) =
p(x(i), y)

q(x(i)|y)
, (2.12)

the importance weight of the draw x(i).
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2.2.2 IS Risk Estimation

To estimate 100α% VaR using importance sampling one first needs to specify the function f in (2.11).

By definition, the 100α% VaR is a 100(1 − α)% quantile of the profit-loss function which means it is

implicitly defined as

P
[
PL(X) ≤ V aR

]
= 1− α.

For the indicator function of a set C = (−∞, c], c ∈ R, it holds that

P[X ∈ C] = E [IC(X)] ,

so one can consider f(x; c) = I{PL(x)≤c}(x) with c = V̂ aR, since

E[f(X; c)] = E
[
I{PL(X)≤c}

]
= P

[
PL(X) ≤ V̂ aR

]
.

Then, the IS estimator V̂ aRIS of the 100α% VaR is obtained by solving

̂E[f(X)]IS = 1− α. (2.13)

In practice, solving of (2.13) amounts to the following simple procedure.

1. Simulate θ(i), i = 1, . . . , N , a set of parameter draws7, from q(θ|y), the importance distribution for

the posterior of the parameters.

2. Compute w(i), i = 1, . . . , N , the importance weights of the draws θ(i), using (2.12).

3. Generate y∗(i), i = 1, . . . , N , the corresponding paths of the future logreturns, given the parameter

draws θ(i), i = 1, . . . , N , and observations y, i.e.

y∗(i) ∼ p(y∗|θ(i), y), i = 1, . . . , N.

4. Compute PL(y∗(i)), i = 1, . . . , N , the corresponding values of the profit-loss function.

5. Sort the values of the profit/loss function ascendingly, denoting the resulting permutation PL(j) :=

PL(y∗(j)), j = 1, . . . , N .

6. Find the value PL(y∗(k)) for which it holds that

k∑
j=1

w(θ(j)) ≤ 1− α, and

k+1∑
j=1

w(θ(j)) > 1− α,

and take this value as the 100α% VaR estimate V̂ aRIS .

Given the IS estimate V̂ aRIS , the k-th value of the sorted profit/loss function as discussed above, the IS

estimator ÊSIS of corresponding ES is simply computed as

ÊSIS =

k∑
j=1

w(x(j))PL(x(j))/

k∑
j=1

w(x(j)),

i.e. it is the weighted average of the profit-loss values up to the VaR estimate.

7Which contains the future error terms, and may also include the latent state variables.
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2.2.3 Numerical Standard Errors

To assess the accuracy of the IS estimator (2.11) Geweke (1989) considers its numerical standard error

(NSE), which is a square root of the estimate of the asymptotic variance of the IS estimator8. However,

in the case of the IS estimation of VaR or ES, the required NSEs do not follow from Geweke (1989).

Regarding the NSE of the former, Hoogerheide and van Dijk (2010) show how to derive it by applying

the delta rule. We present their approach in Appendix A.

For the NSE of ÊSIS , however, no analytical (approximative) formula is known, and one needs to resort

to simulations. The reason for this is that although ES itself can be expressed as an integral (i.e. the

expectation) over a certain set, the boundary of this set, i.e. V aR, is a random variable. Hence, in the

case of the ES estimation, we not only estimate the ultimate integral, but also the region over which the

integration takes place. The MC procedure to estimate the NSE of ÊSIS , developed by Hoogerheide and

van Dijk (2010), is discussed in Appendix A.

2.3 Optimal Importance Density

The choice of the candidate density is of a crucial importance for the performance of the IS estimation. The

optimal importance distribution ought to minimise, given the specified number of draws, the numerical

standard error of the IS estimator f̄ ≡ E [f(X)] , where f is the function of interest of the random variable

X, which has the density p̃(x) with the kernel p. According to Geweke (1989), this optimal importance

distribution has the kernel9

qopt ∝ |f(x)− f̄ |p(x), (2.14)

provided that E[|f(X)− f̄ |] < ∞. For the case of f(x) = IS(x), i.e. the indicator function of the set S,

we have

E[f(X)] = P[X ∈ S] =: p̄

and the optimal importance density is given by

qopt(x) ∝

(1− p̄)p(x), for x ∈ S

p̄p(x), for x 6∈ S
, or qopt(x) =

c(1− p̄)p̃(x), for x ∈ S

cp̄p̃(x), for x 6∈ S
,

where c is a constant, which results in10∫
x∈S

qopt(x)dx =

∫
x6∈S

qopt(x)dx =
1

2
. (2.15)

Condition (2.15) implies that the half of the total mass of the candidate shall be located in the region of

interest S, while the remaining half – outside that region. Such a split is the consequence of using only

8Geweke (1989) shows that under the standard regularity conditions

√
n
(

̂E[f(X)]IS − E[f(X)]
)
d→ N

(
0, σ2

IS

)
.

9Geweke (1989) also points out three considerable difficulties related to this form of the optimal importance density.
First, it depends on the particular form of the function f in question. Second, it involves the estimate of interest f̄ . Third,
it preassumes that sampling from it is feasible.

10This is obtained by noting that∫
x∈S

qoptdx = c(1− p̄)
∫
x∈S

p̃(x)dx = c(1− p̄) = cp̄(1− p̄) = cp̄

∫
x 6∈S

p̃(x)dx = p̄

∫
x 6∈S

qoptdx.

while
∫
x∈S qopt(x)dx+

∫
x6∈S qopt(x)dx = 1.
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the kernel of the target distribution and not its proper density, which makes it necessary to adequately

normalise the weights via sampling from the whole domain.

The above result was derived by Hoogerheide and van Dijk (2010), who apply it in the context of the

VaR estimation. Then, S is interpreted as the “high loss region”, i.e. the subspace of the profit-returns

space with the 100(1 − α%) lowest values, while the optimal importance density prescribes that 50% of

draws shall represent high losses while the other 50% the remaining profit-loss realisations. Figure 2.1

illustrates the construction of the optimal candidate for the VaR estimation.

Figure 2.1: Construction of the optimal IS density. Exemplary profit/loss function (Student’s t with 5
degrees of freedom) and the implied 99% VaR (top). The optimal importance candidate density for the
VaR estimation (bottom).

As pointed out in Hoogerheide and van Dijk (2010), the formula (2.14) cannot be applied to deriving the

optimal importance density for the ES estimation as the latter is based on the unknown value of VaR,

making the problem nonstandard. One can notice, however, that such an optimal importance density

would be characterised by fatter tails than the optimal candidate for the VaR estimation. In practice,

however, if the latter has sufficiently thick tails, i.e. reflects the conservative approach to risk estimation,

the same candidate may be used for both estimation purposes.

The above result gives rise to an efficient estimation procedure called the Quick Risk Evaluation by

Mixture of t Approximation (QERMit) developed by Hoogerheide and van Dijk (2010). Since its thorough

discussion is postponed until Section 3, here we only present the main idea behind this approach. Basically,

QERMit consists of two steps. First, one approximates the optimal candidate density qopt by q̂opt. This

approximation requires obtaining of a preliminary estimate of 100α% VaR, which serves as a rough

“separator” of the high-loss subspace and its compliment (cf. the red dot in the top panel in Figure 2.1).

The construction of q̂opt is additionally complicated by the fact that qopt is bimodal and asymmetric.

In Section 4.1 we present the MitISEM algorithm due to Hoogerheide et al. (2012), which allows for

approximating such nonstandard density shapes. Second, one performs the IS estimation as discussed in

Section 2.2.2 using q̂opt as the importance density.
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3 Quick Evaluation of Risk using Mixture of t Approximation

In the Introduction we stressed the two main ingredients of the original QERMit algorithm of Hoogerheide

and van Dijk (2010). However, the underlying idea of the inference on the tail of the posterior profit/loss

function, i.e. IS estimation using the candidate focused on the high-loss region, specifies neither the

algorithm to construct the approximation in question, nor the class of models to which the technique can

be applied.

The aim of this section is to present the two steps of the QERMit method: the approximation step and

the IS estimation step. However, taking the above remark into consideration, we do not simply restate

the procedure described by Hoogerheide and van Dijk (2010). Instead, we discuss the QERMit method

from a more general perspective, already incorporating its intended modification and extension, which

are the subject of this thesis.

3.1 QERMit Step 1: Approximation

As concluded in Subsection 2.3, construction of the approximation q̂opt to the optimal importance density

qopt is not a straightforward task. The reason is that typically it is multidimensional and bimodalHooger-

heide and van Dijk (2010) point out that in some cases the optimal importance density can be even

trimodal. Such a shape arises e.g. in short selling of a straddle of options., and therefore far from being

elliptical. In consequence, the optimal candidate needs to be tailored to the problem at hand, so that the

speed and the reliability of the chosen method becomes even more crucial. Below we adopt the method

of Hoogerheide and van Dijk (2010) who suggested the following procedure to obtain the approximation

to the optimal importance density.

1. Approximate the kernel of the posterior density of parameters by q1(θ) using a chosen, reliable

method.

2. Sample θ(i), i = 1, . . . , N , a set of parameter draws from q1(θ) using the independence chain MH.

3. Obtain a preliminary 100α% VaR estimate

2.1. Generate y∗(i), i = 1, . . . , N , the corresponding paths of the future logreturns, given the

parameter draws θ(i), i = 1, . . . , N , and observations y, i.e.

y∗(i) ∼ p(y∗|θ(i), y), i = 1, . . . , N.

2.2. Compute PL(y∗(i)), i = 1, . . . , N , the corresponding values of the profit-loss function.

2.3. Sort the values of the profit-loss function ascending, denoting the resulting permutation PL(j) :=

PL(y∗(j)), j = 1, . . . , N .

2.4. Compute V̂ aRprelim, a preliminary 100α% VaR estimate as V̂ aRprelim = PL((1−α)N).

4. Approximate p2(θ, y∗), the kernel of the joint high loss density of parameter vector θ and future

returns y∗, by q2(θ, y∗), using the same method as in Step 1. This is done by imposing the restriction

PL(y∗) ≤ V̂ aRprelim on the joint density q(θ, y∗).

In the original QERMit paper, the method employed in Step 1 was the Adaptive Mixture of t (AdMit)

algorithm of Hoogerheide et al. (2007). As already indicated in the Introduction, we replace AdMit with

a superior procedure due to Hoogerheide et al. (2012), the Mixture of t by Importance Sampling weighted

Expectation Maximisation (MitISEM) algorithm. The motivation behind this modification is given in

Section 4.1, where we investigate methods for posterior approximation.
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3.2 QERMit Step 2: IS Estimation

The approximation q̂opt to the optimal importance density qopt is given by a mixture of the form

q̂opt(θ, y
∗) =

1

2
q1(θ)p(y∗|θ, y) +

1

2
q2(θ, y∗), (3.1)

where the mixing weights correspond to condition (2.15) for the optimal mass allocation in the optimal

candidate density. The second term on the right-hand side in (3.1) is self-evident, as it corresponds to

the high-loss region, i.e. the realisation of y∗ which lead to the profit-loss values equal or lower than

V̂ aRprelim. The first term deserves somewhat more comment. First, it describes the joint posterior of

θ and y∗, which is not the compliment of the high-loss subspace, as required in (2.15). This means that

ultimately one oversamples from the high-loss region. This is not harmful, however, as it allows for a

more “conservative” risk evaluation.

Second, to improve sampling efficiency, the joint distribution of θ and y∗ is factorised into the posterior

for θ and the conditional forecasting density of y∗, given θ. The latter does not need to be approximated

since it is implied by the chosen model. In this way only the density of θ is approximated, which obviously

has a lower dimensionality than the joint distribution. This in turn reduces the computational time.

As argued in Hoogerheide and van Dijk (2010), the reason why one considers the joint distribution for θ

and y∗, even though the profit-loss mapping is a function of y∗ only, is that the kernel of the predictive

density for y∗ is usually unavailable explicitly. On contrary, the kernel of the joint posterior can be

derived as

p(θ, y∗|y) = p(θ|y)p(y∗|θ, y)

∝ p(θ)p(y|θ)p(y∗|θ, y),

where p(θ) is the prior density for the model parameters.

The final remark concerns the actual variable used to approximate the high-loss density. The above

discussion referred to the densities (joint, marginal) of the future returns, i.e. we analysed the realisation

of y∗. However, an equivalent (in terms of the implied estimates) procedure can be based on the future

disturbances ε∗ = {εT+1, . . . , εT+h}. The latter approach has the advantage of being much easier to

perform in practice, as the relationships between the financial returns are typically highly complex, e.g.

characterised by volatility clustering, while the error terms are usually assumed to be serially independent.

Hence, we will implicitly understand p(θ, ε∗) when referring to p(θ, y∗).

4 Methods for Modification and Extension of QERMit

In this Section we explain two methods which play a key role in the modification and extension of the

basic QERMit algorithm. We begin with a general discussion of the density approximation by Mixture of

Student’s t distributions in Section 4.1. Then, we present the details of MitISEM, which is used to replace

AdMit as the approximation algorithm in QERMit. Since we aim at incorporating into the analysis the

latent signal process, inherent to the parameter driven models, the original MitISEM procedure needs to

be modified. In this respect we follow Barra et al. (2014), who notice that, basically, the only required

change consists in a different computation of the importance weights. Now, the latter become also a

function of the unobserved signal, not only of the model parameters. This, in turn, calls for the adoption

of the techniques used in the analysis of nonlinear non-Gaussian state space models, which we discuss in

Section 4.2.
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Prior to proceeding to the core of the analysis, however, we briefly recall the framework of the general state

space models (SSM), which are considered throughout the analysis. The SSM is a class which incorporates

numerous models of interest and provides a flexible tool to approach diverse real-life problems. The main

reason for this versatility in the context of time-series modelling is the focus of SSM on the state or signal

vector driving the dynamics of the investigated system. Furthermore, nonlinear dynamics frequently

arises in science, engineering, economics and a number of other fields, while non-Gaussian disturbances

are either natural or practical in applications. As in Koopman et al. (2015) we restrict our attention to

the class of models with a linear Gaussian state transition equation.

The consequence of such a generality is a nontrivial inference for these models, especially from the

Bayesian perspective, which has been approached by numerous stands of literature. In particular, particle

filtering methods, dating back to Kitagawa (1996) and Gordon et al. (1993), very popular in e.g. signal

processing (cf. e.g. Arulampalam et al., 2002), have gained a substantial attention also in econometrics

(cf. e.g. Pitt et al., 2012). However, due to our simplifying assumption on the linear Gaussian nature of

the state process, we do not need to employ these computationally intensive methods. Instead, we focus

on the numerically more efficient importance sampling techniques (cf. Barra et al., 2014), in which we

follow Shephard and Pitt (1997), Durbin and Koopman (1997), Richard and Zhang (2007) and Koopman

et al. (2015).

For a time series of observations {yt}nt=1, consider the nonlinear non-Gaussian SSM consisting of the

observation density and the linear Gaussian state transition equation

yt|θt ∼ p(yt|xt; θ), xt = Ztαt, t = 1, . . . , n, (4.1)

αt+1 = dt + Ttαt + ηt, α1 ∼ N(a1, P1), ηt ∼ N(0, Qt), (4.2)

where xt is the latent q × 1 signal vector, αt is the m × 1 state vector, ηt is the vector of uncorrelated

Gaussian innovations. The dynamic properties of the stochastic vectors yt, xt and αt are characterised

by the potentially time-varying yet deterministic system matrices: the m × 1 constant vector dt, the

m ×m transition matrix Tt, the m ×m variance matrix Qt. The similar assumptions also apply to the

q ×m selection matrix Zt and the parameters of the initial distribution of the state αt, i.e. the mean

vector a1 and the variance matrix P1. Finally, θ denotes the unknown vector of the model parameters,

consisting of the coefficient of the observation density p(yt|xt; θ) and the system variables. Below, for

notational convenience we often consider the stacked vectors y = (yT1 , . . . , y
T
n ), x = (xT1 , . . . , x

T
n ) and

α = (αT1 , . . . , α
T
n ).

Importantly, the signal xt is a linear function of the state αt, and is assumed to be low-dimensional,

which is in contrast to the potentially high dimensionality of the latter. Notice that although the state

transition is linear Gaussian, the framework can still accommodate for a wide range of nonlinear non-

Gaussian models due to a nonlinear non-Gaussian observations equation.

4.1 Posterior Approximation

The choice of the candidate density is crucial for the performance of the IS estimation. Clearly, as

pointed out in Geweke (1989), the importance density should resemble the target density at the same

time remaining easy to sample from. Moreover, the tails of the importance density need to be thicker

than those of the target density, in order to minimise the risk of omitting subsets of the target’s support.

Finding of an appropriate candidate becomes particularly cumbersome when the shape of the target

density is non-elliptical. Such shapes, however, are commonly encountered in the Bayesian analysis,

where posterior densities often exhibit multimodality or skewness.
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4.1.1 Mixtures of Student’s t Distributions

A standard approach to overcome this problem is to approximate the target density with a mixture

of basis densities11. Below, following Hoogerheide et al. (2007) and Hoogerheide et al. (2012), we use

mixtures of Student’s t densities. The primary reason for this choice of the basis functions is that

Student’s t distributions have thicker tails than the normal distributions, which, as discussed above, is

an important property of a candidate distribution. This property makes them also robust to outliers, i.e.

the importance weights assigned to atypical observations are reduced (cf. Peel and McLachlan, 2000),

which makes the IS estimation more efficient and stable. Last but not least, mixtures of Student’s t

distributions are easy to sample from, and the subsequent draws evaluation is quick, making the whole

estimation procedure effective.

Several methods to construct the approximating mixture of Student’s t has been developed, cf. Peel

and McLachlan (2000), Svensén and Bishop (2005), Hoogerheide et al. (2007) and Hoogerheide et al.

(2012). Below, we will mainly focus on the last approach, called Mixture of t by Importance Sampling

weighted Expectation Maximization (MitISEM). Because we will compare its performance with the one

of an earlier algorithm, called the Adaptive Mixture of t (AdMit) of Hoogerheide et al. (2007), here,

we provide a brief discussion of the differences between both approaches. First, the objective function

in AdMit is the coefficient of variation of the importance weights (i.e., the standard deviation divided

by the mean), which is directly minimised via numerical optimisation. On contrary, MitISEM aims at

minimising the Kullback-Leibler divergence, which is an indirect way to minimise the variance of the

IS estimator. This makes the latter method quicker and more reliable, as it avoids the computationally

intensive numerical optimisation step. Second, MitISEM is a “fully adaptive” algorithm, as each time a

new candidate component is added to the old mixture, the parameters of all the components in the new

mixture are jointly optimised, whereas in AdMit only the parameters of the new component are optimised,

with those of the old mixture not being adjusted any more. Third, the only inputs to MitISEM are draws

from the candidate density and their importance weights, while in AdMit one needs to use the kernel of

the joint target density. Thus, the latter method cannot be applied to conditional or marginal densities,

which makes it useless in our Bayesian analysis based on the factorisation of the joint posterior density.

4.1.2 MitISEM Algorithm

Below, we discuss the basic MitISEM algorithm, which is one of two key tools in our methodology. The

exposition is given in a slightly modified way compared to the original one in Hoogerheide et al. (2012),

in order to account for potential treatment of the state space models. In this respect, we follow the

approach of Barra et al. (2014), who refer to their procedure as to Extended Mixture of t by Importance

Sampling weighted Expectation Maximization (EMitISEM).

Because we adopt the Bayesian perspective, we treat all the unknown quantities (i.e. the model param-

eters, the potential latent states, and the future observation realisations) as random variables and refer

to them as to parameters (cf. Durbin and Koopman, 2012, chapter 13, who distinguish state parameters

and additional parameters, and Hoogerheide and van Dijk, 2010, where model parameters and future

returns are estimated jointly). We denote such an augmented parameter vector by θ̃ to distinguish it

from the model parameter vector θ used in the remaining part of this thesis. Consequently, qζ refers

to the joint distribution of the augmented parameter vector. We explain these issues in more detail in

Subsection 4.1.3.

The idea behind the MitISEM algorithm is to start with a single Student’s t component and iteratively

augment it with new components until a specified convergence criterion is met. The mixture parameters

11Zeevi and Meir (1997) show that such mixtures can provide an arbitrarily close approximation to any strictly positive
density over a compact domain.
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at a given iteration step are derived using the importance sampling weighted version of the Expectation-

Maximisation (EM) algorithm of Dempster et al. (1977), which we will refer to as ISEM (the details of

the ISEM step are given in Appendix B.2).

1. Initialisation

1.1. Define the naive candidate density qζ(•) (as discussed below) .

1.2. Simulate N augmented draws θ̃(•,1), . . . , θ̃(•,N) from qζ(•). This may require first drawing of

model parameters θ(•,1), . . . , θ(•,N) and then conditional simulation of the corresponding signal

paths.

1.3. Evaluate the corresponding importance weights w(•,1), . . . , w(•,N).

2. Adaptation

2.1. Adapt the candidate qζ(•) to qζ(0) by setting its mean and variance equal to the IS estimates of

the mean µ0 and the variance Σ0, based on the draws θ̃(•,1), . . . , θ̃(•,N) from qζ(•), and setting

the number of degrees of freedom for the adapted candidate ν1 to a specified fixed value (e.g.

5).

2.2. Simulate N augmented draws θ̃(0,1), . . . , θ̃(0,N) from qζ(0). This may require first drawing of

model parameters θ(0,1), . . . , θ(0,N) and then conditional simulation of the corresponding signal

paths.

2.3. Evaluate the corresponding importance weights w(0,1), . . . , w(0,N).

3. ISEM

3.1. Adapt the candidate for the model parameters qθζ(0) to qθζ(1) by performing the ISEM step (cf.

Appendix B.2) based on draws θ̃(0,1), . . . , θ̃(0,N) from qζ(0). If there are no latent states in the

model, qθζ(0) = qζ(0), otherwise qθζ(0) is the marginal density over the state vector. Call the

obtained mode, scale matrix and number of degrees freedom µ1, Σ1 and ν1, respectively.

3.2. Simulate N augmented draws θ̃(1,1), . . . , θ̃(1,N) from qζ(1). This may require first drawing of

model parameters θ(1,1), . . . , θ(1,N) and then conditional simulation of the corresponding signal

paths.

3.3. Evaluate the corresponding importance weights w(1,1), . . . , w(1,N).

3.4. Calculate CoV (1), the coefficient of variation (CoV) of the weights w(1,1), . . . , w(1,N), where

CoV (h) =

√
E[(w(h))2]−E[w(h))]2

E[w(h)]
, (4.3)

E[(w(h))m] =
1

N

N∑
i=1

(w(h,i))m, m = 1, 2,

is the CoV of the weights obtained for the mixture of h components.

3.5. Set H = 2 and CoV (2) =∞.

4. Iteration on the number of components

While the relative change between CoV (H) and CoV (H−1) is greater than the chosen threshold (e.g.

0.01) keep adding new components to the mixture in the following way.

4.1. Use a chosen fraction (e.g. [0.1N ]) of the draws θ̃(H−1,1), . . . , θ̃(H−1,N) from the previous mix-

ture qζ(H−1) corresponding to the highest IS weights to compute the IS mean and variance. Use

these parameters as the starting mode and scale parameters for the new mixture component,

µH and ΣH .
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4.2. Update the mixture probabilities: assign the starting value for the new component probability

ηH (e.q. 0.1) and multiply the old mixture probabilities η1, . . . , ηH−1by ηH . Set the number

of degrees of freedom for the new component νH to a specified fixed value (e.g. 5).

4.3. Given the staring parameters of the new mixture ζ(H) = {µh,Σh, νh, ηh}Hh=1, adapt the can-

didate for the model parameters qθζ(H−1) to qθζ(H) by performing the ISEM step based on

the draws from the previous mixture θ̃(H−1,1), . . . , θ̃(H−1,N) and the corresponding weights

w(H−1,1), . . . , w(H−1,N). If there are no latent states in the model, qθζ(H−1) = qζ(H−1), other-

wise qθζ(H−1) is the marginal density over the state vector.

4.4. Simulate N augmented draws θ̃(H,1), . . . , θ̃(H,N) from qζ(H). This may require first drawing

of model parameters θ(H,1), . . . , θ(H,N) and then conditional simulation of the corresponding

signal paths.

4.5. Evaluate the corresponding importance weights w(H,1), . . . , w(H,N).

4.6. Calculate CoV (H), the coefficient of variation (CoV) of the weights w(H,1), . . . , w(H,N).

4.1.3 Details of the Algorithm

The proposal density, and hence the weight formula (2.7), essentially depend on the type of a model

under consideration. For observation driven models, the likelihood function is available in closed-form

and the time varying parameters are perfectly predictable one-step-ahead (conditional on the current

information set). Hence, there are no latent variables, which means that the only parameters from the

Bayesian perspective are the model parameters θ. Then, the posterior density is simply p(θ|y) and it can

be approximated be qζ(θ|y), a mixture of Student’s t distributions, yielding the importance weights

w(θ(i)) =
p(θ(i)|y)

qζ(θ(i)|y)
, (4.4)

with θ(i)
i.i.d.∼ qζold(θ|y), where qζold is an old candidate density (we refer to Appendix B.1 for the details

of the derivation).

In parameter driven models the time-varying parameters are subject to an idiosyncratic noise, leading

to the likelihood function being unavailable in closed form, hence neither is the kernel of the posterior

density p(θ|y). This class of models includes the nonlinear non-Gaussian state space models, which we are

particularly interested in. As already noticed, Bayesian treatment of these models requires to consider

the whole latent process x = {xt}nt=1 as an additional parameter, implying that it enters the posterior

density p(θ, x|y). Following Barra et al. (2014), we use as the importance density qζ(θ, x|y), which we

decompose as

qζ(θ, x|y) = q(x|θ, y)qζ(θ|y) (4.5)

The first term on the right-hand side in (4.5) targets the smoothed state density and the draws from it

are obtained via a simulation smoother. For this purpose, we employ the NAIS method of Koopman et al.

(2015), which is discussed in Section 4.2. The second term on the right-hand side in (4.5) is approximated

by a mixture of Student’s t distributions, with the parameters ζ derived with MitISEM. However, since

the kernel of the (marginal) posterior p(θ|y) is unknown, we cannot use the standard weight formula (4.4)

to obtain the necessary inputs to the algorithm. As shown in Barra et al. (2014), the required modified
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weights are given by

w(θ(i), x(i)) =
p(θ(i), x(j)|y)

qζ(θ(i), x(j)|y)

∝ p(y|θ(i), x(i))p(x(i)|θ(i))p(θ(i))
q(x(i)|θ(i), y)qζ(θ(i)|y)

= q(y|θ(i))p(y|θ
(i), x(i))

q(y|θ(i), x(i))
p(θ(i))

qζ(θ(i)|y)
, (4.6)

as p(x|θ) = q(x|θ) due to our restriction to the class of state space models with linear Gaussian state

equation. In (4.6), p(y|θ, x) is the conditional observation density implied by the model; q(y|θ, x) is the

importance observation density, given the augmented parameter vector θ̃ = (θ, x); p(θ) is the prior on

the model parameter vector θ; qζ(θ|y) is the marginal proposal density for the model parameters based

on the previous mixture; q(y|θ) is the likelihood of the auxiliary model marginalised over x. The latter

can be efficiently obtained via the Kalman filter when the importance density for the states is based on

an auxiliary linear Gaussian model, as it will be the case in the remaining part of the thesis.

Regarding the initial (naive) candidate used in Step 1.1. of the MitISEM algorithm, in case of an ob-

servation driven model one can simply take a Student’s t density with the mode equal to the mode of

the target density, and with the scale set to the inverse Hessian of the logkernel density of the target,

computed at the mode. For a parameter driven model, one can proceed in a similar way, however the

mode is obtained by the simulated maximum likelihood method (cf. Subsection 4.2.3), while the scale

is equal to minus the inverse Hessian of the simulated loglikelihood, computed at the mode parameter

estimates.

The final remark relates to the chosen convergence criterion, i.e. the relative change in the coefficient of

variation (CoV) of the IS weights. The CoV of a given sample of IS weights w(·,1), . . . , w(·,N), defined by

formula (4.3), is its standard deviation divided by its mean. We use the CoV to evaluate the distribution

of the IS weighs, in which we follow Hoogerheide et al. (2012). The main reason for this choice is its

intuitiveness: loosely speaking the lower CoV, the better the approximation to target the candidate

provides. To see this, notice that if the candidate and the target coincide, then the CoV becomes 0;

if the candidate deviates a lot from the target, thus poorly approximating the latter, the distribution

of weights is uneven, with some being extremely high and some being close to 0, which results in large

values of CoV. For a more in-depth discussion of the desirable properties of the CoV we refer to Ardia

et al. (2009).

4.2 Estimation of Parameter Driven Models

In this Section we consider the problem of likelihood evaluation for nonlinear non-Gaussian state space

models. We focus on the IS-based methods originating from Shephard and Pitt (1997) and Durbin and

Koopman (1997), which we will refer to as SPDK. In these papers the importance density is constructed

based on an auxiliary linear Gaussian model, yielding a local approximation to the original model. This

approach was further developed in Richard and Zhang (2007), who proposed the Efficient Importance

Sampling (EIS). Their technique is also based on a linear Gaussian auxiliary model, yet provides a global

approximation to the true model. Recently, Koopman et al. (2015) constructed a novel IS approach,

incorporating the advantages of the numerical integration into the EIS framework, called the Numerically

Accelerated Importance Sampling (NAIS). As this method is numerically and computationally efficient,

we adopt it in the remaining part of the thesis as the state sampler.
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4.2.1 IS Likelihood Evaluation

The likelihood function corresponding to (4.1) and (4.2) is given by

L(y; θ) =

∫
p(α, y; θ)dα =

∫ T∏
t=1

p(yt|xt; θ)p(αt|αt−1; θ)dα1 . . . dαT , (4.7)

where p(α, y; θ) is the joint density of y and α following from (4.1) and (4.2). In all the cases but when

p(yt|xt; θ) is a Gaussian density with mean xt = Ztαt and variance Ht, the integral (4.7) is analytically

intractable. In the mentioned special case it can be evaluated using the Kalman filtering and smoothing

(KFS) methods, but in general it needs to be computed using numerical techniques. A common approach

to the likelihood evaluation in the context of state space models is importance sampling. Although it is a

special case of the general framework discussed in Subsection 2.2.1, we provide details of the derivations

for future reference.

The importance density is taken to be Gaussian and we let it factorise as follows

q(α, y; θ) = q(y|α; θ)q(α; θ), (4.8)

where the two densities on the right hand side are assumed to be Gaussian as well. From the specification

of the transition equation in (4.2) it follows that q(α; θ) ≡ p(α; θ), which, together with (4.8), allows us

to rewrite (4.7) as

L(y; θ) =

∫
p(α, y; θ)

q(α, y; θ)
q(α, y; θ)dα

= g(y; θ)

∫
p(y|x; θ)p(α; θ)

q(y|x; θ)q(α; θ)
q(α|y; θ)dα

= q(y; θ)

∫
ω(x, y; θ)q(α|y; θ)dα. (4.9)

In (4.9) q(y; θ) is the observation likelihood function as implied by the importance Gaussian model which

does not depend on x and can be treated as a constant; ω(x, y; θ) is the importance weight function

defined as

ω(x, y; θ) =
p(y|x; θ)

q(y|x; θ)
. (4.10)

The IS evaluation of (4.9) is performed by generating S independent signal trajectories x(1), . . . , x(S) from

the Gaussian importance density q(x|y; θ). Under mild regularity conditions (cf. e.g. Geweke, 1989), the

weak law of large numbers guarantees that the likelihood estimate

L̂(y; θ) = q(y; θ)
1

S

S∑
s=1

w(x(s), y; θ), (4.11)

where importance weight w(x(s), y; θ) is the importance function evaluated at the draw x(s), converges

in probability to the true likelihood value L(y; θ) when S →∞.

4.2.2 Gaussian Importance Density

Up to now the only characterisation of the importance density was via (4.8), which is of limited practical

use. However, as always the case of IS estimation, the exact specification of the candidate density is

crucial for the quality of the estimate. The common approach is to base q(α, y; θ) on an auxiliary linear
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Gaussian model as discussed below, because this allows for applying KFS methods to compute various

quantities of interest.

Notice that the Gaussian importance density (4.8) can be decomposed as

q(α, y; θ) =

T∏
t=1

q(yt|xt; θ)q(αt|αt−1; θ), (4.12)

where q(αt|αt−1; θ) corresponds to the state transition equation from (4.2). Richard and Zhang (2007)

suggested that the importance observation density q(yt|αt; θ) can be expressed as

q(yt|xt; θ) ≡ exp

{
at + bTt xt −

1

2
xTt Ctxt

}
, (4.13)

with the coefficients at, bt and Ct, depending on the observations y and the model parameters ψ, need

to be specified. First, the scalars at, t = 1, . . . , T , are chosen to guarantee that (4.12) is a proper density

function, i.e. that it integrates to one, and hence are given by

at =
1

2
log |Ct| −

1

2
log 2π − 1

2
bTt C

−1
t bt.

Second, the vectors bt and the matrices Ct, t = 1, . . . , T , which characterise the unique set of IS parameters

χ = {b1, . . . , bT , C1, . . . , CT } ,

need to be determined. SPDK considered representing (4.13) as the smoothed density of the linear

Gaussian state space model for the artificial observation y∗t ≡ C−1t bt, with the observation equation

y∗t = xt + εt, xt = Ztαt, εt ∼ N(0, C−1t ), t = 1, . . . , T

and the transition equation equivalent to (4.2). The logdensity of the artificial Gaussian model is equiv-

alent to the log of the importance density (4.13), since the former has the form

log q(y∗t |αt; θ) = −1

2

(
log 2π + log |Ct|−1 + (y∗t − θt)TC−1t (y∗t − θt)

)
= −1

2

(
log 2π + log |Ct|−1 + (C−1t bt − θt)TC−1t (C−1t bt − θt)

)
,

= −1

2

(
log 2π − log |Ct|+ bTt C

−1
t bt

)
︸ ︷︷ ︸

at

+btxt −
1

2
xTt Ctxt,

which indeed is the log of (4.13). This in turn implies that

q(x, y|θ) ≡ q(x, y∗; θ),

q(α, y|ψ) ≡ q(α, y∗; θ),

where y∗ = (y∗T1 , . . . , y∗TT ). The equivalence between the artificial model and the importance density

allows us to employ efficient KFS techniques together with the related simulation smoothing method

to generate the draws from q(x|y; θ), as required to compute the IS estimate L̂(y; θ). Regarding the IS

parameters χ, in the SPDK approach they are set to ensure that the mode (mean) estimate of x with

respect to the artificial q(x|y∗; θ) equals the mode estimate of x with respect to the true p(x|y; θ). For

that reason, this method provides barely the local approximation of the integral in question.

The alternative approach of Richard and Zhang (2007), which will be referred to as EIS (abbreviation

of efficient importance sampling), has an advantage of delivering the global approximation to p(y|x; θ).
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Their technique sets χ to minimize the variance of the log importance weights logω(x, y; θ) =: λ(x, y; θ).

Thus, the task boils down to solving of the following variance minimization problem

min
χ

∫
λ2(x, y; θ)ω(x, y; θ)q(x|y; θ)dθ. (4.14)

Due to multidimensionality and hence infeasibility of (4.14), is needs to be approximated, which in the

EIS method is done by its reduction to a series of minimization problems, at each time point separately,

as follows

min
χt

∫
λ2(xt, yt; θ)ω(xt, yt; θ)q(xt|y; θ)dxt, t = 1, . . . , T, (4.15)

with χt = {bt, Ct}. Although much simpler than (4.14), the integral in (4.15) still needs to be approxi-

mated, which in the EIS approach is again done via IS. The importance draws are generated using the

simulation smoothing from q(α|y; θ) and are used to iteratively update the IS parameters via weighted

least squares computations. Hence, this technique relies on simulations in two ways: to approximate

the likelihood (4.7) and to obtain the optimal IS parameters for the importance density (4.13), which

introduces substantial simulation noise to the analysis.

A superior method compared to EIS was developed by Koopman et al. (2015). Their Numerically Accel-

erated Importance Sampling (NAIS) technique replaces the second simulation step in EIS by numerical

integration. The key insight is that the smoothing density q(xt|y; θ) ≡ q(xt|y∗; θ) for the artificial model

has a closed-form representation which allows us to apply numerical integration when minimizing (4.15).

Indeed, for a given χ and for a scalar signal it holds

q(xt|y∗; θ) = N(x̃t, Vt) =
1√

2πVt
exp

{
−1

2
V −1t (xt − x̃t)2

}
, t = 1, . . . , T, (4.16)

where x̃t and Vt stand for the smoothed (conditional) mean and variance, respectively, and can be

obtained via KFS techniques. The details of the numerical integration are given in Appendix C.

4.2.3 Simulated Maximum Likelihood

Once we are able to estimate the likelihood function (4.7) for the model (4.1) and (4.2) via (4.11), the

numerical maximisation of this simulated likelihood can be employed to deliver the Simulated Maximum

Likelihood (SML) estimate of θ. Typically, maximisation is performed using a quasi-Newton method,

e.g. the BFGS algorithms and is applied to the loglikelihood for numerical stability. Starting values for

the optimisation can be determined through running the whole NAIS procedure with S = 0, i.e. via

performing only the numerical integration. These values are the SML estimates of the auxiliary model

as they maximise its likelihood q(y; θ). Then, the full NAIS algorithm is carried out, with number of

simulations set e.g. to S = 200 (cf. Koopman et al., 2015). Finally, notice that to guarantee a smooth

likelihood function in θ, necessary for convergence of the quasi-Newton algorithm, the common random

number need to be used each time one applies the NAIS algorithm with S > 0.

5 Observation Driven Models

As pointed out in the Introduction, the two key elements of the original QERMit methods were the

posterior approximation via AdMit and the class of models limited to the observation driven models.

The starting point of our analysis is modification of the first of these ingredients while remaining within

the original class of models. The main purpose of this Section is thus to compare the results obtained
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with QERMit based on different posterior approximation techniques. We aim to show that the chosen

MitISEM algorithm leads to more accurate estimates. In addition to MitISEM and AdMit, we consider

the quantitative results obtained with the direct approach, which despite its simplism is still used in

the literature, constituting therefore an important benchmark. All the algorithms were implemented in

MATLAB (the codes are available upon request) and the computations were performed using version

2014b.

5.1 ARCH(1)

As the first application, we estimate the 1-day-ahead 99% VaR and ES using the basic, simple ARCH(1)

(Engle, 1982) model. The simplicity of this example suits it particularly well to illustrate the key idea

behind the QERMit approach. The model under consideration is given by

yt =
√
htεt,

εt
i.i.d.∼ N (0, 1),

ht = ω + αy2t−1,

where for numerical stability we impose the variance targeting constraint, i.e. we assume that

ω = S2(1− α),

with S2 being the sample variance of yt. This results in a reduction of model parameters to one, namely α.

As in the original QERMit paper (Hoogerheide and van Dijk, 2010), we use the data on daily logreturns of

the S&P 500, from January 2, 1998 to April 14, 2000, which constitutes a sample of T = 576 observations,

with yT = −6.0045 and S2 = 1.6256, cf. Figure 5.1. Finally, we set a flat prior on [0, 1).

Figure 5.1: S&P 500 log-returns, from January 2, 1998 to April 14, 2000.

Within this simple setting, the QERMit algorithm proceeds as follows. First, we approximate the

posterior function for α

p(α|y) =

(
1√
2π

)T T∏
t=1

1√
ω + αy2t−1

exp

(
− y2t

2(ω + αy2t−1)

)
,

with q1,Mit(α), a mixture of Student’s t distributions using both, AdMit and MitISEM. Figure 5.2a

presents the posterior density p(α), while Figures 5.2b and 5.2c illustrate the approximations to p(α)

obtained using AdMit and MitISEM, respectively. Even though the two latter plots appear to be rather

similar, it can be inferred from Table 5.1 that they differ quite substantially. Recall from Subsection
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4.1.3 that the quality of a candidate can be measured by the CoV it delivers (roughly speaking, the

lower the CoV, the better the approximation). Moreover, if the approximation is based on an iteratively

augmented mixture, like in our case, the computational efficiency calls for using as little components as

possible to obtain a required level of the approximation accuracy.

(a) Posterior

(b) AdMit (c) MitISEM

Figure 5.2: The posterior parameter density p(α|y) and the approximations to it.

The candidate obtained with AdMit is a mixture of 5 components, which yields the coefficient of variation

equal to 0.28. On the other hand, MitISEM needs only 4 components and delivers a much lower CoV of

0.15. These results confirm that MitISEM targets the posterior parameter density more efficiently and

more accurately than AdMit does.

Admit MitISEM

‘Whole’ space component q1

No. of components 5 4

CoV 0.2791 0.1462

High-loss component q2

No. of components 6 4

CoV 0.8227 0.4052

Table 5.1: Quality of the mixture-based approximations to the components of the optimal importance
density as reflected by the final CoV and the required number of components.

In the second step, we generate N = 10, 000 draws α(i), i = 1, . . . , N , from the posterior p(α|y) using

the independence chain Metropolis-Hastings algorithm with q1,Mit(α) taken as the proposal distribution.
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The corresponding 1-day-ahead forecast of the logreturns are obtained as y∗(i) ∼ N
(
0, ω + α(i)y2T

)
, i.e.

y(i) ∼ N
(
0, 1.6256(1− α(i)) + 36.0542α(i)

)
= N

(
0, 1.6256 + 34.4286α(i)

)
. To derive the preliminary

VaR estimate, we sort the profit-loss values PL(y∗(i)) (cf. formula (2.1)) in ascending order and take

the (1 − α)N = 100-th one. As it can be inferred from Table 5.2, both algorithm delivered comparable

initial VaR estimates: V̂ aRprelim obtained with AdMit was equal to −5.62, while with MitISEM −5.64.

However, the acceptance rate obtained using the approximation based on MitISEM is higher that the one

recorded with AdMit (equal to 0.93 and 0.87, respectively). This confirms the results reported in Table

5.1 that the former algorithm provides a better approximation to the posterior density.

The last element of the first step of QERMit concerns approximation of the high-loss density. As already

indicated in Section 3.2, we consider p(α, εT+1) instead of p(α, yT+1). Hence, we need to characterise

those ε
(i)
T+1, which lead to the profit/loss PL(y(i)) values not exceeding the preliminary VaR estimate

V̂ aRprelim, given the draws of α(i). For a given future return y
(i)
T+1, the profit-loss value falls into the

high-loss region if it satisfies

y
(i)
T+1 = PL(V̂ aRprelim) = 100 log

(
V̂ aRprelim/100 + 1

)
.

Since

y
(i)
T+1 =

√
h
(i)
T+1ε

(i)
T+1,

h
(i)
T+1 = ω + α(i)yT

= 1.6256 + 34.4286α(i),

(5.1)

we arrive at the following condition describing the border of the high-loss subspace

ε
(i)
T+1 =

100 log
(
V̂ aRprelim/100 + 1

)
√

1.6256 + 34.4286α(i)
.

Figure 5.3 present the draws from the approximation to joint distribution p(α, εT+1), together with the

border of the high-loss region, obtained with both algorithms. One can see that indeed roughly 100

draws fall “below” the red line, as one would expect for the 99% VaR. It can also be noticed that the

approximation generated with AdMit yields draws more spread along the α dimension. This is due to

the fixed, fat-tails of Student’s t components in the AdMit approach, where the number of degrees of

freedom is set to 1 and never updated. MitISEM, on contrary, optimises the components’ number of

degrees of freedom, which allows for more flexibility in fitting the targets of interest. This superiority

of MitISEM over AdMit is reflected in the properties of the approximation to the high-loss density, as

reported in Table 5.1. Again, the former approach is able to deliver a lower CoV of 0.40 with using only

4 components, while AdMit needs 6 components to converge, and yielded a higher CoV of 0.82.

(a) AdMit (b) MitISEM

Figure 5.3: Draws from the approximation to the joint density p(α, εT+1) and the high-loss region.
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Figure 5.4 presents the construction of the approximation to the optimal importance density, as discussed

in Section 3.2, using the MitISEM algorithm12. Figure 5.4a displays the approximation to the joint

density, i.e. q1,Mit(α)p(εT+1|α), while Figure 5.4b – to the high-loss density q2,Mit(α, εT+1). Then, the

approximation to the optimal candidate density, obtained as a 50–50 mixture of these two approximations,

is depicted in Figure 5.4c.

(a) MitISEM approximation to the joint posterior
density.

(b) MitISEM approximation to the high-loss den-
sity.

(c) MitISEM approximation to the optimal impor-
tance density.

Figure 5.4: Construction of the approximation to the optimal candidate density.

Having constructed the optimal candidate densities with both QERMit method, we compare the 99%

VaR and ES estimates computed using AdMit and MitISEM, as well as with the direct approach. The

direct approach is based on a Student’s t candidate for the draws of parameter α and direct sampling

for future errors εT+1, given the parameter draws. Regarding the parameters of the direct candidate, its

mode is set to the mode of the target density equal to 0.1099, the scale – to the inverse Hessian of the

logkernel density of the target computed at the mode equal 0.0029 and we choose 1 degrees of freedom.

Table 5.2 shows that the estimates of both risk measures delivered by all three approaches are in line

with each other . The 1-day-ahead 99% VaR estimate delivered by MitISEM is equal to −5.68 and by

AdMit to −5.66, which is almost identical to the direct estimate. However, both IS-based methods with

the optimal importance candidate density outperform the direct approach in terms of delivering the NSE

one order of magnitude lower. The NSE occurring in the VaR estimation with the direct approach is

equal to 0.0798, while when the IS methods are adopted it becomes 0.0073 and 0.0048 for AdMit and

MitISEM, respectively. Also in the case of the ES, the estimates from all three methods are comparable

and equal −6.52, −6.56 and −5.68 for the direct, AdMit and MitISEM algorithms, respectively. The

NSE of MitISEM again is lower than the one from AdMit (0.0126 compared to 0.0145), and both are

roughly 10 times lower than the NSE occurring in the direct estimation. We conclude that MitISEM is

12Visually, the three dimensional plots generated with AdMit and with MitISEM look very much alike, therefore we have
abandoned the initial idea of presenting both versions. Nevertheless, the quantitative results obtained with both algorithms
differ considerably.
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the most precise tool for risk evaluation, outperforming not only the direct approach but also the AdMit

method.

Direct Admit MitISEM

VaR prelim – -5.6260 -5.6405

Acceptance rate 0.8069 0.8722 0.9300

VaR estimate -5.6558 -5.6622 -5.6843

VaR NSE 0.0798 0.0073 0.0048

ES estimate -6.5198 -6.5572 -6.5761

ES NSE 0.1227 0.0145 0.0126

Table 5.2: Estimates of 1-day-ahead 99% VaR and ES for S&P 500 in the ARCH(1) model.

Figure 5.5 illustrates the grounds for the superiority of the IS based methods, in particular of the MitISEM

approach. The horizontal axis shows the indices i of draws (i = 1, . . . , 10000), while the vertical axis

shows the i-th sorted profit/loss value. One can see that the focus on the high-loss density allows to

obtain a more precise insight into the shape of the lower tail of the profit/loss distribution as opposed to

the direct approach which performs inference based on barely few samples. Moreover, with MitISEM this

shape is characterised by a higher curvature as compared to the one obtained with AdMit, as expected

for the fat-tailed financial returns series.

(a) Direct (b) AdMit

(c) MitISEM

Figure 5.5: Sorted future profit/losses values PL(y
(i)
T+1) for the ARCH(1,1) model and the corresponding

99% VaR estimate (red dot).
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5.2 GARCH(1,1)-t

As the second application of our modified QERMit approach, we consider the estimation of 1-day-ahead13

99% VaR and ES for the S&P500 daily logreturns from January 2, 1998 to December 31, 2007 using the

GARCH(1,1) model with Student’s t error. The data is presented in Figure 5.6. The model specification

is similar to the one used in Hoogerheide and van Dijk (2010) and is given by

yt =
√
ρhtεt,

εt ∼ t(ν),

ρ :=
ν − 2

ν
,

ht = ω + αy2t + βht−1,

where t(d) denotes the Student’s-t distribution with d degrees of freedom. For numerical stability, we

used variance targeting and set

ω = S2(1− α− β),

where S2 is the sample variance, in this case equal to 1.29. We set flat priors on ω, α and β

ω > 0, α ∈ (0, 1), β ∈ (0, 1)

and we impose the restriction that α + β < 1. For the number of degrees of freedom, we specify the

proper uninformative exponential prior for ν−2 (the restriction ν > 2 ensures that the variance is finite).

We collect the model parameters in the vector θ = (α, β, µ, ν)T .

Figure 5.6: S&P 500 log-returns, from January 2, 1998 to December 31, 2007.

Differently than in the case of the ARCH(1,1) model, to compute the implied 1-day-ahead volatility

hT+1 in the GARCH(1,1)-t model, we need to obtain, given the draws θ(i), i = 1, . . . , N , from the

posterior p(θ|y), the paths of the volatility {h(i)1 , . . . , h
(i)
T } corresponding to the draw θ(i). Obviously,

also the prediction of yT+1 becomes more complex and ceases to have a simple formula (5.1). Now, it

is recursively computed, as implied by the model, given yT , h
(i)
T+1 and θ(i), i = 1, . . . , N . Despite these

complications and the fact that now we need to find an approximation to 4 and 5 dimensional densities

(corresponding to the posterior of the parameters and the joint posterior of parameters and disturbances),

the core idea of QERMit remains unchanged so we refrain from its detailed description similar to the one

for the ARCH(1) model.

13Ultimately, we would be interested in the estimation of 10-day-ahead risk measures, as required by the Basel standards
and as done in Hoogerheide and van Dijk (2010). However, for comparative purposes and due to the computational
limitations (the high-loss density in that case would be 14-dimensional), we decided to focus our attention on 1-day-ahead
measures.
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The properties of the mixtures used in two QERMit methods are presented in Table 5.3. Regarding

the joint component corresponding to the whole profit/loss space, both AdMit and MitISEM use three

multivariate Student’s t components. However, the mixture provided by MitISEM is characterised by a

more than twice lower CoV (equal to 0.36) than the one obtained with AdMit (where the CoV is equal

0.80). For the high-loss component we set the maximum number of components to 2 in order to speed up

the computation. Hence, it is likely that neither algorithm achieved convergence, yet the CoV generated

by MitISEM is already substantially lower than the one from AdMit (0.66 and 0.78 respectively).

AdMit MitISEM

‘Whole space’ component q1

No. of components 3 3

CoV 0.8061 0.3626

High loss component q2
∗

No. of components 2 2

CoV 0.7854 0.6592

∗The maximum number of components for the
high loss density approximation was upfront
limited to 2 to speed up the computations.

Table 5.3: Quality of the mixture-based approximations to the components of the optimal importance
density as reflected by the final CoV and the required number of components.

Table 5.4 compares the results delivered under three considered method, the two QERMit approaches

discussed above and the direct approach. The latter is based on the one Student’s t component to sample

parameters followed by the direct sampling of the future observation disturbances given the draws of the

parameter vector. The Student’s t component has one degree of freedom, the mode equal to the mode of

the target density, and the scale set to the inverse Hessian of the logkernel density of the target computed

at the mode. The preliminary VaR estimate obtained with MitISEM is equal to -2.75, while the one

generated using AdMit amounts to -2.69. The result delivered by MitISEM seems to be more reliable, as

it originates from a mixture which more closely approximates the target of interest: the acceptance rate

of the independence MH performed with the MitISEM candidate is almost 80%, while roughly speaking

the AdMit candidate allows for accepting only every second draw (acceptance rate of 53%).

Differently than in the ARCH(1) example, the VaR estimates in the current case noticeably differ among

themselves. The direct approach gives the value of -2.79, while the AdMit yields a much lower number

of almost -3.00. The estimate from MitISEM lies in-between the two former results and is equal to

-2.88. These discrepancies are even more suspicious when one considers the corresponding NSE values,

which for the IS-based methods are again much lower than for the direct approach. However, the ranges

determined by NSE around the VaR estimates obtained for AdMit and for MitISEM are disjoint, each

being very precise. A potential explanation for this outcome is a considerable difference in the preliminary

VaR estimates from both methods. Even though the one generated using AdMit is higher than the one

obtained with MitISEM, the fact that AdMit does update neither the number of degrees of freedom,

nor the remaining parameters of the previous components, may pose difficulties for this algorithm to

correctly approximate the target, especially in higher-dimensional spaces. The differences between the

ES estimates are also noticeable, yet less worrying than these in the VaR estimates. This is because the

numerical error ranges determined by the NSE around the estimates are overlapping, so the conclusions

based on all there methods are rather similar. As in the case of ARCH(1) model, the MitISEM based

QERMit outperforms the competing approaches. The NSE generated when MitISEM is employed is equal

to 0.0284, which is the lowest value among these obtained with the considered methods (with 0.0145 and
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0.1227 for AdMit and the direct approach, respectively ).

Direct AdMit MitISEM

VaR prelim – -2.6873 -2.7461

Acceptance rate 0.5188 0.5268 0.7989

VaR estimate -2.7947 -2.9626 -2.8766

VaR NSE 0.0635 0.0106 0.0075

ES estimate -3.4388 -3.6353 -3.5345

ES NSE 0.1159 0.0426 0.0284

Table 5.4: Estimates of 1-day-ahead 99% VaR and ES for S&P 500 in the GARCH(1,1)-t model.

As for the ARCH(1) model, we conclude with an illustration of the key conceptual difference between the

direct approach and the IS-based methods, in particular the one using the MitISEM algorithm. In Figure

5.7 we consider the sorted series of the obtained profit/loss values. The horizontal axis shows the indices

i of draws (i = 1, . . . , 10000), while the vertical axis shows the i-th sorted profit/loss value. Clearly,

no precise inference on the nature of the high-loss region can be carried out using the direct approach,

which bases the estimates on a handful of draws. In contrast, the focus on the high-loss subspace of

both QERMit methods is likely to result in an accurate insight into this subspace. Nevertheless, the

approximation to the posterior profit/loss density delivered by AdMit is rather strange-looking, with

very wide right tail. The MitISEM-based curve exhibits a much more desirable behaviour.

(a) Direct (b) AdMit

(c) MitISEM

Figure 5.7: Sorted future profit/losses values PL(y
(i)
T+1) for the GARCH(1,1)-t model and the correspond-

ing 99% VaR estimate (red dot).
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6 Parameter Driven Models

The contribution of the previous section was upgrading the original QERMit method through altering

the posterior approximation algorithm which it is based on. In the current section we aim to make

QERMit applicable to a broader class of models, namely to allow for the risk evaluation in the parameter

driven models. Due to the demonstrated superiority of the MitISEM-based QERMit over the two other

methods, in this section we adopt MitISEM as our tool to approximate the model parameters posterior

density and the high loss density.

In Section 3 we discussed the general QERMit method treating the parameter vector very broadly. In

principle, it can also include the unobserved states of a state space model, as it is the case in the Bayesian

analysis. Hence, conceptually, the QERMit algorithm applied to the parameter driven models remains

unchanged compared to the case of the observation driven models. However, the necessity of dealing with

multidimensional conditional smoothed state densities in the former class of models poses considerable

practical difficulties, so that the whole QERMit procedure becomes much more complex. For this reason,

below we present step-by-step the QERMit extension to the models including latent variables.

Furthermore, we discuss the technical problems which we encountered in the implementation of the

algorithm. These issues prevented us from generating point estimates of VaR and ES, i.e. the counterparts

of Tables 5.1–5.4 obtained for the observation driven models. We leave the task of obtaining such results

for the parameter driven models for further research. Finally, we illustrate the steps of a simplified version

of the general QERMit algorithm using two standard models: the basic Stochastic Volatility (SV) model

and the Stochastic Volatility model with the Student’s t observation errors (SVt).

6.1 Extended QERMit algorithm

The starting point for the procedure is constructing of q1,ζ1(θ, x|y), i.e. the approximation to the posterior

density of the augmented parameter vector (θ, x). To this end, we can use the decomposition (4.5) given

by q1,ζ(θ, x|y) = q1(x|θ, y)q1,ζ1(θ|y). As in the Extended MitISEM algorithm of Barra et al. (2014),

discussed in Subsection 4.1.2, we adopt a mixture of Student’s t densities, parametrised by vector ζ1,

to approximate the posterior distribution of states and the conditional Gaussian density to target the

smoothed state density.

Since the profit/loss function depends on the future (observed) realisations of the logreturns, and these

are determined by the future realisation of the unobserved logvolatility process, to obtain the preliminary

h-days-ahead 100(1 − α%) VaR estimate, in addition to the model parameters, one needs to analyse

the disturbances both of the state and the observation processes, denoted by η∗ = {ηT+1 . . . , ηT+h} and

ε∗ = {εT+1 . . . , εT+h}, respectively. Notice that this is one of the main differences as compared to the

observation driven models, where only the observation disturbances need to be modelled. Given the

model parameter draws θ(i), i = 1, . . . , N , the corresponding NAIS importance sampling parameters and

the conditional simulated signal paths, as well as the draws of both disturbances, one can calculate the

profit/loss values PL(y∗(i)) and derive the desired preliminary estimate of the 100(1− α)% VaR.

The next step consists in approximating the high loss region, where the losses exceed the preliminary

VaR estimate. In the parameter driven models this becomes a more challenging task than in the obser-

vation driven models, again due to the latent nature of the logvolatility process. To determine whether

a given draw of the model parameter vector θ(i) can lead to extreme losses one needs to compute the

NAIS importance sampling parameters χ(i) and employ the simulation smoother to sample one corre-

sponding signal path x(i). Similarly as in the standard QERMit version, one is interested in the joint

Bayesian estimation of (augmented) parameter vector and future returns. Therefore, now the approx-

imation to the joint posterior high loss density takes the form q2,ζ2(θ, x, η∗, ε∗|y), which factorises as

31



q2(x|θ, η∗, ε∗|y)q2,ζ2(θ, η∗, ε∗|y). This means that the mixture of Student’s t densities can serve as an

approximation to the joint posterior density of model parameter vector and future disturbances, while

the latent states can be smoothed conditionally on the parameter and disturbances draws, and the ob-

servations. As a result one obtains a sample {θ, x, η∗, ε∗}(i), i = 1, . . . , N , where each draw generates

extreme losses.

Having both approximations, one applies the 50-50 formula (3.1) to evaluate both subsamples, from

q1(x|θ, y)q1,ζ1(θ|y)p(η∗)p(ε∗) and from q2(x|θ, η∗, ε∗|y)q2,ζ2(θ, η∗, ε∗|y), on the optimal candidate density

qopt(θ, x, η
∗, ε∗) =

1

2
q1(x|θ, y)q1,ζ1(θ|y)p(η∗)p(ε∗) +

1

2
q2(x|θ, η∗, ε∗, y)q2,ζ2(θ, η∗, ε∗|y).

Notice, that given the data y = {y1, . . . , yT } one can only determine the first T NAIS parameters

χ(i) = {χ(i)
1 , . . . , χ

(i)
T } and hence smooth the signal up to time T . Thus, η∗ and ε∗ cannot help in

predicting the smoothed signal and so the simulation smoothing is performed independently from the

future disturbances. This allows us to reformulate the optimal candidate as follows

qopt(θ, x, η
∗, ε∗) =

1

2
q1(x|θ, y)q1,ζ1(θ|y)p(η∗)p(ε∗) +

1

2
q2(x|θ, y)q2,ζ2(θ, η∗, ε∗|y)

=
1

2
q(x|θ, y)

[
q1,ζ1(θ|y)p(η∗)p(ε∗) + q2,ζ2(θ, η∗, ε∗|y)

]
,

because we take the same conditional Gaussian density q(x|θ, y) to target the signal process.

To obtain the IS estimates of the 100(1−α)% VaR and ES, in addition to both subsamples, one needs the

corresponding importance weights. The kernel evaluation is obtained by computing the joint posterior

density of a given draw implied by the model, i.e.

p(θ, x, η∗, ε∗|y) ∝ p(y|θ, x, η∗, ε∗)p(x|θ, η∗, ε∗)p(θ)p(η∗)p(ε∗)

= p(y|θ, x)p(x|θ)p(θ)p(η∗)p(ε∗),

due to the independence of the future disturbances assumed in the model. Then, the standard formula

(2.7) determines the importance weight function yielding

w(θ, x, η∗, ε∗|y) =
p(θ, x, η∗, ε∗|y)

qopt(θ, x, η∗, ε∗|y)

∝ p(y|θ, x)p(x|θ)
q(x|θ, y)

p(θ)p(η∗)p(ε∗)[
q1,ζ1(θ|y)p(η∗)p(ε∗) + q2,ζ2(θ, η∗, ε∗|y)

]
= q(y|θ)p(y|θ, x)

q(y|θ, x)

p(θ)p(η∗)p(ε∗)[
q1,ζ1(θ|y)p(η∗)p(ε∗) + q2,ζ2(θ, η∗, ε∗|y)

] (6.1)

where in (6.1) we used the fact that

q(x|θ, y) =
q(y|θ, x)q(x|θ)

q(y|θ)

and p(x|θ) = q(x|θ) (cf. Barra et al., 2014). Notice that the formula (6.1) corresponds to the EMitISEM

weight (4.6), while the second factor in (6.1) is the importance weight (4.10) of the signal from the

likelihood evaluation based on NAIS. Once the IS weights are determined, one can proceed as discussed

in Subsection 2.2.2 to obtain the IS estimates of two risk measures of interest.

In contract with the IS risk evaluation, the direct approach for the parameter driven models can be

characterised in a much simpler way. One first draws the models parameters from some candidate

density, e.g. a multivariate Student’s t distribution, then samples the corresponding signal paths using a
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simulation smoother. The disturbances vectors are drawn independently. The implied future profit/losses

values lead to the direct VaR and ES estimates as discussed in Subsection 2.1.2.

6.2 Applications

The evidence of a poor performance of the direct approach applied to the observation driven models

calls for employing of the IS VaR and ES estimation also in the parameter driven models. In practice,

however, some numerical problems may occur, as it was in our case. A very common problem arising in

the IS analysis is that the importance weights are likely to either become extremely small or large, which

may lead to only few draws being assigned non-negligible weights. Depending on the context, different

approaches are developed to deal with this problem14.

We also experienced the ill-behaviour of the importance weights, which we can attribute to the marginalised

likelihood q(y|θ(i)) and the signal importance weights p(y|θ, x(i))/q(y|θ, x(i)) varying heavily among the

model parameter draws θ(i), i = 1, . . . , N . Given the limited scope of the project, so far we were not

able to develop a way to overcome this difficulty, which we leave for further research. Even though the

inability of computing the importance weights prevents us from obtaining the final point IS estimates

of the h-day-ahead 100(1− α)% VaR and ES, below we present the idea behind the Extended QERMit

algorithm based on the simplified approach without the importance weights. We illustrate the consecu-

tive steps of the method to finally obtain a posterior profit/loss distribution for the SV and SVt models

resembling the ones obtained in the previous section for the observation driven models. This suggests

that our innovative approach is likely to deliver much more accurate results than the direct approach.

6.2.1 SV

The second class of models used to analyse volatility of financial return series is the stochastic volatility

(SV) model (cf. Taylor, 1986, Harvey et al., 1994). Similarly to the GARCH model, the SV model is able

to capture volatility clustering present in time series of financial logreturns. The key difference between

both types of models is that in the SV model the variance of the logreturns is subject to an unobserved

innovation. Hence, the current information set does provide an explicit characterisation of the underlying

latent stochastic process for the log-volatility. As pointed out in Jungbacker and Koopman (2009), the

SV model is known to outperform the GARCH models in terms of volatility forecasts and to be linked

to option pricing theory.

For the time series of financial log-returns yt the simplest version of the SV model is given by

yt = σtεt εt ∼ N (0, 1)

σt = exp

(
1

2
xt

)
, xt = c+ αt,

αt+1 = φαt + σηηt, ηt ∼ N (0, 1).

(6.2)

The univariate signal xt is interpreted as the unobserved log-volatility. The parameter vector θ is given by

(c, σ2, φ)T , where c is the unconditional mean of the log-volatility; φ ∈ (0, 1) is a persistence parameter,

which typically exceeds 0.8; σ2
η > 0 is the variance of the log-volatility process. The unconditional

variance of the log-volatility is equal to
σ2
η

1−φ2 and it characterises the “volatility of volatility”. Regarding

14In the Sequential Monte Carlo literature these problems are known as the weight degeneracy and sample impoverish-
ment. There, the basic technique to overcome these obstacles is the Sequential Importance Resampling, cf. Gordon et al.,
1993.
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the prior specification, we follow Omori et al. (2007) and set the prior distribution as below

c ∼ N (0, 1),

φ+ 1

2
∼ Beta(20, 1.5),

1

σ2
η

∼ Gamma

(
5

2
,

0.05

2

)
We consider the estimation of 1-day-ahead 99% VaR and ES for the IBM stock daily logreturns from

January 3, 2007 to December 30, 2011, which are presented in Figure 6.1. The sample consists of 1259

observation and is characterised by the excess kurtosis (equal to 7.0063) and a slight positive skewness

(equal to 0.1051).

Figure 6.1: IBM log-returns, from January 3, 2007 to December 30, 2011.

Approximation to the parameter posterior density

As discussed in Subsection 6.1, the first step of the Extended QERMit procedure consists in constructing

of the candidate importance sampling density for the posterior density corresponding to the whole prof-

it/loss space. We begin with building of a mixture of the Student’s t densities approximating the model

parameter density using the MitISEM algorithm as discussed in Subsection 4.1.2. To initialise the proce-

dure, we perform the SML estimation of the model parameter vector θ = (c, φ, σ2
η) (cf. Subsection 4.1.2).

The numerical optimisation of the simulated likelihood is carried out with respect to the transformed

parameter vector θ̃ = T (θ), where the inverse of the mapping T , T (c, φ, σ2
η) =

(
c, log

(
φ

1−φ

)
, log σ2

η

)
has

the form

T−1(c̃, φ̃, σ̃2
η) =

(
c̃,

1

1 + exp(−φ̃)
, exp σ̃2

η

)
.

The inverse of the Jacobian of T−1 is given by

J−1(T ) = diag
(

1,
(

1 + exp(−φ̃)
)(

1 + exp(φ̃)
)
, exp(−σ̃2

η)
)

and it is necessary to obtain the Hessian of the loglikelihood as the function of the original parameters,

which is used to construct the scale of the initial naive component. The SML estimates are reported in

Table 6.1 are in line with the results in the literature (cf. Barra et al., 2014). We take them as the mode

of the initial component.

The inverse of the Hessian of the loglikelihood at the SML estimates, corrected by the inverse of Jacobian
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Parameter Estimate St. deviation

c 0.5116 7.1254

φ 0.9677 0.3677

σ2
η 0.0524 0.5308

Table 6.1: SML estimation results for the parameters of the SV model.

of the reverse transformation, is given by

Σ =

50.7707 0.0890 −0.1982

0.0890 0.1352 −0.1338

−0.1982 −0.1338 0.2817

 .
To enhance the numerical performance of the algorithm, we replace element Σ1,1 by 1, so that the draws

of parameter c are more concentrated around its SML estimate. We take this modified matrix as the

scale matrix of the initial Student’s t density, where we set the number of degrees of freedom to 5.

We simulate N = 10, 000 model parameter draws θi, i = 1, . . . , N from the initial proposal density. For

each draw we perform the NAIS algorithm to determine χ(i), the optimal importance sampling parameters

for the Gaussian density, which we use in the simulation smoothing of the corresponding logvolatility

paths x(i). Finally, we compute the importance weights w(i) of the augmented draws (θ(i), x(i)) using

the formula (4.6). The numerical problems with the weights discussed above prevent us from performing

further steps of the MitISEM algorithm, hence we take the initial candidate as our final approximation

to the model parameters posterior density. The corresponding NAIS parameters define the conditional

Gaussian density for the signal.

Figure 6.2a depicts the simulated values of the SV model parameters based on the draws from the

approximation to the posterior parameter density q1,ζ(θ|y). One can see that the shapes of the histograms

reflect the prior assumptions on the model parameters. However, the draws of φ and σ2
η are spread

substantially more widely than indicated by the prior assumptions. This can be contributed to the draws

being generated from the naive candidate (i.e. the one which was not updated) with the large elements

of the scale matrix.

The weighted averages of the NAIS parameters b = {bt}Tt=1 and C = {Ct}Tt=1 are shown in Figure 6.3 (the

blue lines). As the weights we use only the weights for the model parameter p(θ)/q1,ζ(θ|y). The reason is

that the NAIS parameters do not depend on the draws of the signal paths simulated from the Gaussian

model determined by them. In contrast, the signal paths should be weighted using the EMitISEM weights

to reflect the probability of obtaining both, the underlying model parameter vector and the realised signal

trajectory. Due to the problems in computing the extended weights, Figure presents 6.4 the ordinary

average of the signal paths simulated using the model parameter draws (the blue line). One can see that

it roughly corresponds to the smoothed signal obtained from the KFS based on the model parameters

set to their SML estimates (the black line), although the averaged signal is slightly higher. This might

be the consequence of using the ordinary average and not the one based on the extended weights.

Preliminary VaR estimation

In the second step, we simulate N independent draws of the future disturbances of states ηT+1 and

observations εT+1 from the standard normal distribution as implied by model (6.2). These, together with

the augmented draws (θ(i), x(i)), determine the future profit/loss values. The preliminary 1-day-ahead

99% VaR estimate is then obtained in a standard way, i.e. as the 0.01N -th of the ascending sorted

profit/loss values and is equal to

V̂ aRprelim = −4.6510.
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(a) Draws from the approximation to the posterior
parameter density q1,ζ(θ|y).

(b) Draws from the approximation to the high-loss den-
sity q2,ζ(θ, ηT+1, εT+1|y).

Figure 6.2: Simulated values of SV model parameters.

Figure 6.3: Weighted average of the NAIS parameters given the draws from q1,ζ(θ|y) and
q2,ζ(θ, ηT+1, εT+1|y) for the SV model corresponding to the whole profit/loss space (blue) and to the
the high-loss region (red).

High-loss density approximation

The approximation to the 5-dimensional high-loss density of parameter and disturbances was obtained

iteratively and jointly with the conditional Gaussian density for the states. Figure (6.2b) presents the

simulated values of the SV model parameters corresponding to the high-loss density, i.e. based on the
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Figure 6.4: Average signal path given the draws from q1,ζ(θ|y) and q2,ζ(θ, ηT+1, εT+1|y) for the SV model
corresponding to the whole profit/loss space (blue) and to the the high-loss region (red) together with
the smoothed signal for the SML model parameter estimates (black).

draws from the approximation to the posterior parameter density q2,ζ(θ, ηT+1, εT+1|y). One can see a

considerable change in the histogram shapes for all model parameters. The mode of the posterior high-

loss draws of c moved substantially to the right, now being equal to around 2.22, while for the whole

profit/loss region the draws of c were centred around 0. The mass of the high-loss posterior distribution

of φ visibly shifted from around 0.8 towards 0, concentrating around 0.6. The draws of σ2
η from the

high-loss density are spread much less widely, and now they predominantly lie below 0.5.

The high-loss-region model parameters shall imply different sample properties of the NAIS importance

parameters. This is indeed the case, as it can be seen in Figure 6.3. The average NAIS parameters

corresponding to the high-loss subspace are lower and less volatile. Since the NAIS parameter C =

{Ct}Tt=1 defines the inverse of the variance of the observation disturbance in the linear Gaussian auxiliary

model, a lower C in the high-loss region means that the artificial observation from the approximative

Gaussian model are more volatile.

Figure 6.5: Simulated values of the future state (left) and observation (right) disturbances drawn from
q2,ζ(θ, ηT+1, εT+1|y).

Regarding the simulated values of the two error terms, Figure 6.5 shows that in the high-loss region the

state disturbance has a positive mean of around 0.9, with the standard deviation similar to the one implied

by the model. On contrary, the observation disturbances which lead to high losses are highly negative,

with the average value of around -2. They are also more concentrated around the mean compared to the

observation disturbances for the whole profit/loss space.

One can conclude that the high-loss region is characterised by much higher average logvolatility, lower
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logvolatility persistence and lower volatility of the logvolatility. The unobserved logvolatility process is,

however, subject to a larger noise. These properties of the high-loss logvolatility process are captured in

Figure 6.4 (the red line). Such a signal, together with considerable negative observation disturbances,

leads to extreme losses.

Optimal candidate density construction

As in the standard case, the optimal candidate density in the extended QERMit method is obtained using

50-50 formula (2.15). For a given set of draws from the whole space and from the high-loss region, qopt

plays a role in determining their importance weights. The latter are necessary to correctly determine the

location in the sorted profit/loss values for the combined sample of the profit/loss value corresponding

to the quantile of interest of the posterior profit/loss distribution for the whole space. Loosely speaking,

this amounts to locating the red dot in the plot of the ordered profit/losses, as in Figures 5.5 and 5.7 for

the ARCH and GARCH-t cases.

The problems with the weight determination, which we have discussed in the introduction to this section,

prevented us from obtaining this very last step of the QERMit procedure. Hence, we need to limit our

analysis to a more qualitative discussion, leaving the task of obtaining of the quantitative results for

further research. Figure 6.6 displays the sorted profit/loss values for the combined sample from the

Figure 6.6: Sorted future profit/losses values PL(y
(i)
T+1) for the SV model.

whole profit/loss space and from the high-loss region. The horizontal axis shows the indices i of draws

(i = 1, . . . , 20000), while the vertical axis displays the i-th sorted profit/loss value. One can see that

the shape of the obtained curve follows a similar pattern to the ones observed in the previous section.

However, compared to the models analysed there, there is remarkable difference in the shape of the

high-loss part, which now is steeper and characterised by a higher curvature. This can be attributed to

the main difference between the SV models and the GARCH-type models, which is the number of error

processes driving the observation dynamics (i.e. treating the logvolatility of a latent process). This result

confirms that the SV model, even with the Gaussian observation errors, is able to replicate the fat tails

of the profit/loss distribution observed in the data.

6.2.2 SVt

As the second application of the Extended QERMit method to a parameter driven model we consider

the extension of the basic Gaussian SV model, the SV model with t observation disturbances (SVt). Its
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specification is given by

yt =
√
ρσtεt εt ∼ t(ν)

ρ :=
ν − 2

ν
,

σt = exp

(
1

2
xt

)
, xt = c+ αt,

αt+1 = φαt + σηηt, ηt ∼ N (0, 1).

(6.3)

and allows it to capture the heavy tails of the financial returns since the number of degrees of freedom ν

of the distribution of the observation disturbances parametrises the fatness of the tails. This modification

leads to the model logdensity no longer being Gaussian but Student’s t and hence taking the following

form

log p(y|x) =T ·
(

log Γ

(
ν + 1

2

)
− log Γ

(ν
2

)
− 1

2
log(ν − 2)

)
− 1

2

T∑
t=1

xt −
1

2

T∑
t=1

(ν + 1) log

(
1 +

y2t
(ν − 2)σ2

t

)
.

We set the same priors for parameters c, φ and σ2
η as for the SV model. For parameter ν we proceed

as in the case of the GARCH-t model specifying the proper uninformative exponential prior for ν − 2,

so that the variance of ν exists. We consider the estimation of 1-day-ahead 99% VaR and ES and use

the same IBM dataset, which we used in the previous Subsection. Because the general outline of the

QERMit procedure is the same as for the SV model, we refrain here from a detailed discussion of each

step, focusing instead on the modifications in the implementation of the basic method and the differences

in the results.

Approximation to the parameter posterior density

We base the candidate importance sampling density for the posterior density corresponding to the whole

profit/loss space on the Student’s t density with the mode equal to the SML estimates of the model

parameter vector θ = (c, φ, σ2
η, ν), the scale set to the inverse of the Hessian computed at the mode

and 5 degrees of freedom. Again, the numerical optimisation of the simulated likelihood is carried out

with respect to the transformed parameter vector θ̃ = T (θ), where now the inverse of the mapping T ,

T (c, φ, σ2
η, ν) =

(
c, log

(
φ

1−φ

)
, log σ2

η, log(ν − 2)
)

has the formula

T−1(c̃, φ̃, σ̃2
η, ν̃) =

(
c̃,

1

1 + exp(−φ̃)
, exp σ̃2

η exp(ν̃) + 2,

)
.

The inverse of the Jacobian of T−1 is given by

J−1(T ) = diag
(

1,
(

1 + exp(−φ̃)
)(

1 + exp(φ̃)
)
, exp(−σ̃2

η), exp(−ν̃)
)
.

Table 6.2 present the SML estimates together with the corresponding standard errors. Notice that the

estimates for the three parameters from the basic SV model change only slightly, with the estimates for c

and φ increasing, while for σ2
η decreasing. The estimated value of the degrees of freedom is high (equal to

11.17), yet still similar to the values reported in literature (cf. e.g. Chib et al., 2002,Jacquier et al., 1994).

The huge standard error of the estimate of ν reflects the fact that this parameter is hard to precisely

estimate in practice.

The inverse of the Hessian of the loglikelihood at the SML estimates, corrected by the inverse of Jacobian
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Parameter Estimate St. deviation

c 0.5565 8.2203

φ 0.9783 0.3073

σ2
η 0.0320 0.4134

ν 11.1708 136.7771

Table 6.2: SML estimation results for the SVt model parameters.

of the reverse transformation, is given by

Σ =


67.5734 0.1085 −0.2109 −118.3921

0.1085 0.0944 −0.0906 −11.8130

−0.2109 −0.0906 0.1708 20.9784

−118.3921 −11.8130 20.9784 18707.9746

 .
Similarly as in the SV case, we tune matrix Σ so that it generates more reliable results: we set Σ1,1 to 1

and Σ4,4 to around 46. The latter choice reflects the high uncertainty inherent in the estimation of the

number of degrees of freedom.

As in the case of the SV model, we simulate N = 10, 000 model parameter draws θi, i = 1, . . . , N from

the initial proposal density and for each draw we compute the NAIS importance parameters χ2. Then,

we use them to simulate the corresponding logvolatility paths x(i). Again, we take the initial candidate

as our final approximation to the model parameters posterior density, due to the numerical problems

with the computation of the importance weights defined by (4.6). The corresponding NAIS parameters

define the conditional Gaussian density for the signal.

The simulated values of the SVt model parameters based on the draws from the approximation to the

posterior parameter density q1,ζ(θ|y) are shown in Figure 6.7a. Compared to the SV model case, the

draws of the parameter c are spread more widely, with a slight negative skew. A noticeable change can

also be observed for the distribution of σ2
η, which shrinks towards 0. The simulated values of φ exhibit

fairly any change compared to the ones obtained in the previous subsection. As far as the draws of ν

are concerned, the shape of the histogram closely reflects both, the prior assumption, and the chosen

modification in the scale matrix of the initial Student’s t component.

Figure 6.8 shows the weighted averages of the NAIS parameters b = {bt}Tt=1 and C = {Ct}Tt=1 (the blue

lines). Remarkably, both b and C for the SVt model are on average much lower than for the SV model

(cf. the ranges of the vertical axes) and less volatile. The average signal paths simulated using the model

parameter draws is shown in Figure 6.9 (the blue line). As in the SV case, it behaves similarly to the

smoothed signal obtained from the KFS based on the model parameters set to their SML estimates (the

black line). Differently than it was previously, however, now the averaged signal is slightly lower than

the smoothed signal based on the SML estimates.

Preliminary VaR estimation

As previously, the second step consists in the simulation ofN independent draws of the future disturbances

of states ηT+1 and observations εT+1. This time, however, the latter are drawn from the Student’s t

distribution, as implied by model (6.3). The number of degrees of freedom used for each draw corresponds

to the parameter draws θ(i), i = 1, . . . , N . The state disturbances are simulated from the standard normal

distribution. The preliminary 1-day-ahead 99% VaR estimate based on the profit/loss values implied by

the parameter and the disturbance draws is given by

V̂ aRprelim = −3.8420.
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(a) Draws from the approximation to the posterior parameter density q1,ζ(θ|y).

(b) Draws from the approximation to the high-loss density q2,ζ(θ, ηT+1, εT+1|y).

Figure 6.7: Simulated values of SV model parameters.

41



Figure 6.8: Average NAIS parameters given the draws from q1,ζ(θ|y) and q2,ζ(θ, ηT+1, εT+1|y) for the
SVt model corresponding to the whole profit/loss space (blue) and to the high-loss region (red).

Figure 6.9: Average signal path given the draws from q1,ζ(θ|y) and q2,ζ(θ, ηT+1, εT+1|y) for the SV model
corresponding to the whole profit/loss space (blue) and to the high-loss region (red) together with the
smoothed signal for the SML model parameter estimates (black).
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High-loss density approximation

Figure (6.7b) presents the simulated values of the SV model parameters corresponding to the high-

loss density, which are constructed using the draws from the approximation to the posterior parameter

density q2,ζ(θ, ηT+1, εT+1|y). The most striking observation is that all the high-loss draws are much more

concentrated around the modes than their ‘whole’ space counterparts. The extend of this shrinkage is

noticeably higher than in the SV model. As far as properties of the individual parameters are concerned,

the mode of the parameter c moves from 0 to 1, which is less than in the SV model. The behaviour of

the parameter φ is yet far more different than in the previous model, as now the logvolatility persistence

increases for the high-loss scenarios, with its mass predominantly concentrated around 0.85. The shape of

the histogram of σ2
η draws largely corresponds to the shape of the prior for σ2

η, as now the vast majority

of draws of this parameter lies below 0.2. Finally, the mode of the simulated values of the number of

degrees of freedom parameter moved from around 11 for the ‘whole’ space to around 7 for the high-loss

region. This indicates that the observation disturbances leading to extreme losses are characterised by

fatter tails than in these of the observation errors for the ‘standard’ profit/loss values.

Figure 6.10: Simulated values of the future state (left) and observation (right) disturbances drawn from
q2,ζ(θ, ηT+1, εT+1|y).

Figure 6.10 displays the posterior distribution of the two error terms for the high-loss scenarios, which

noticeably differ from their SV counterparts. First, one can see that now the state disturbance in the

high-loss region has the mode which is not much different from the one implied by the model (6.3),

i.e. 0. Interestingly, however, now the state disturbances are slightly skewed to the right. Second, the

observation disturbances which lead to high losses are again highly negative, even more than in the case

of the SV model. Moreover, one can indeed spot the tails which are fatter than when these disturbances

were Gaussian.

Summing up, the high-loss region arising in the SVt setting features the average logvolatility higher

than the whole profit/loss space and considerably lower volatility of volatility. These properties were

also reported for the corresponding parameters of the SV model. Differently than in the latter, now the

persistence of logvolatility in the high-loss region in higher and less dispersed. The observation errors

leading to the high-loss scenarios have fatter tails than usually and are even more negative than the ones

from the SV model. Finally, the state noise in the high-loss region has only slightly positive mean, which

states in contrast to the SV model case, where it was highly positive.

One can conclude that the high-loss region is characterised by much higher average logvolatility, lower

logvolatility persistence and lower volatility of the logvolatility. The unobserved logvolatility process is,

however, subject to a larger noise. These properties of the high-loss logvolatility process are captured in

Figure 6.4 (the red line). Such a signal, together with considerable negative observation disturbances,

leads to extreme losses.

Optimal candidate density construction

For the same reasons as in the previous subsection, we report only the qualitative outcomes of the

SVt study, leaving establishing of the quantitative ones for further research. Figure 6.11 shows that in

principle, the shape of the sorted future profit/loss curve is similar to the one obtained with the normal

SV model. Again, the horizontal axis shows the indices i of draws (i = 1, . . . , 20000), while the vertical
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axis displays the i-th sorted profit/loss value. What is different, is that the high-loss part is noticeably

flatter as compared to the previous case. This is rather suspicious, as one would expect that modelling of

the observation errors with the Student’s t distribution shall lead to even fatter tails than in the normal

SV model.

Figure 6.11: Sorted future profit/losses values PL(y
(i)
T+1) for the SVt model.

7 Conclusions

We have considered Bayesian risk estimation using the QERMit algorithm of Hoogerheide and van Dijk

(2010), which we have modified and extended in two steps. First, we have replaced the unreliable and

numerically unstable AdMit algorithm by the robust and accurate MitISEM method for constructing of

the approximation to the posterior density. The results of our empirical study based on a series of daily

S&P500 returns confirm the importance of our modification, showing a substantial gain in the accuracy

and the precision of the VaR and ES estimates when the posterior predictive densities are targeted using

MitISEM rather than with AdMit.

Second, we have developed a fundamental extension of the basic QERMit approach which allows for

the application of QERMit to a broader class of models, including the parameter driven models. The

incorporation of the latent volatility process into the analysis heavily relies on the importance sampling

methods for nonlinear, non-Gaussian state space models. In the application of the extended QERMit

method, we have encountered numerical difficulties in computing the required importance weights, over-

coming of which we leave for further research. Nonetheless, we have illustrated our new method using

a series of daily IBM stock returns. This application suggests promising results for the risk evaluation

based the nonlinear non-Gaussian models, given the obstacles in the importance weights are removed.

Obtaining of the quantitative results for the parameter driven models constitutes the main focus for

further research. Subsequently, we want to extend the time horizon for which we calculate VaR and ES,

in particular to obtain the 10-days-ahead estimates, as required by the Basel standards. Finally, the

developed framework can serve to answer numerous interesting research questions. For instance, we aim

to compare the QERMit results generated with the parameter driven models and with the observation

driven models. This would contribute to the long-standing debate about the superiority of one class of

models over another.
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A NSE

A.1 VaR

The NSE for the IS estimator for 100α% VaR needs to be obtained using the delta method. This is because

the true value of 100α% VaR is not known with certainty, so that the expectation of I{PL(X) ≤ V aR}
is not an unconditional expectation of a function of a random variable X with the known density kernel.

The required formula is given by

σ̂IS,V aR =
σ̂
IS,P[PL≤V̂ aRIS ]

p̂PL(V̂ aRIS)
. (A.1)

The derivation of (A.1) can be found in Hoogerheide and van Dijk (2010). The nominator of (A.1) is the

numerical standard error for the IS estimator of the probability P[PL(x) ≤ c], for c = V̂ aRIS . It follows

from Geweke (1989), as the value c is this time fixed to the preliminary estimate of 100α% VaR.

The denominator is the estimator of the density of the PL function at V̂ aRIS and in general it lacks an

explicit formula. It can be estimated by

P[PL(X) ≤ c+ ε]− P[PL(X) ≤ c− ε]
2ε

, ε > 0.

It is advisable to compute the above expression for several values of ε and use the ε which yields the lowest

estimate of p̂PL(V̂ aRIS), so the one ends up with the highest, more conservative estimate of σ̂IS,V aR.

A.2 ES

If the VaR were known with certainty, the IS estimation of ES would be a standard estimation of a

function of a random variable distributed according to a truncated distribution, i.e. of PL(X), where

47



X ∼ p(x)I{PL(X) ≤ V aR}. In such a standard case the NSE would follow from Geweke (1989).

However, only the IS estimate of 100α% is available, which means that explicit formula for the NSE

does not hold. To compute the required NSE one can proceed as follows. First, construct a grid of VaR

values, e.g. ranging from V̂ aRIS − 4σ̂
IS,V̂ aR

to V̂ aRIS + 4σ̂
IS,V̂ aR

. Second, for each value on the grid

compute the NSE of the IS estimator ES if the true VaR were the value from the grid (i.e. conditional

NSE), as well as estimate the conditional probability p̂(ÊSIS |V aR) of the corresponding ES estimator.

Third, estimate the density of the ES estimator as the weighted average of the conditional NSEs from

the previous step, with the weights equal to the conditional densities of the VaR values from the grid.

Finally, compute the NSE of ÊSIS as the standard deviation of the estimated density p(ÊS)IS .

B MitISEM

B.1 Approximation with Mixtures of Student’s t Distributions

We want to approximate the target density p̃(θ) of which only the kernel p(θ) is required with the

candidate density qζ(θ) such that the Kullback-Leibler divergence (Kullback and Leibler, 1951)∫
p(θ) log p(θ)dθ −

∫
p(θ) log qζ(θ)dθ (B.1)

is minimised. The target density p will usually be the posterior density given the data y, but we omit the

conditioning on y for the notational convenience. Moreover, we will take as the candidate qζ the mixture

of Student’s t distributions, so that the minimisation will be carried out with respect to the mixture

parameters ζ and the number of mixture components H. Since the first term in (B.1) does not depend

on ζ, the minimisation of (B.1) amounts to the maximisation of∫
log qζ(θ)p(θ)dθ =

∫
log qζ(θ)

p(θ)

qζ(θ)
qζ(θ)dθ

= Eqζ
[
log g(θ)

p(θ)

qζ(θ)

]
,

≈ 1

N

N∑
i=1

log qζ(θ
(i))

p(θ(i))

qζ(θ(i))

=
1

N

N∑
i=1

log qζ(θ
(i))w(θ(i)),

where θ(i)
i.i.d.∼ qζold(θ) were drawn from the previous candidate, and

w(θ(i)) =
p(θ(i))

qζ(θ(i))
. (B.2)

Importantly, the draws θ(i), i = 1, . . . , N , and their weights w(θ)(i) are fixed during the optimization and

they do not depend on ζ.

B.2 EM Step in MitISEM

Consider a mixture of H Student-t densities

qζ(θ) =

H∑
h=1

ηht(θ|µh,Σh, νh), (B.3)
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where t(θ|µ,Σ, ν) denotes the d-dimensional Student-t density

td(θ|µ,Σ, ν) =
Γ
(
ν+d
2

)
Γ
(
nu
2

)
(πν)d/2

|Σ|−1/2
(

1 +
(θ − µ)TΣ−1(θ − µ)

ν

)−(d+ν)/2
and ζ = {µh,Σh, νh, ηh}Hh=1 is the set of the mixture parameters: modes, scale matrices, degrees of

freedom and mixing probabilities. The aim is to maximise the weighted log-density

1

N

N∑
i=1

w(i) log qζ(θ
(i)), (B.4)

with respect to ζ, where w(i) = w(θ(i)) = p(θ(i))
qζ(θ(i))

is the importance weight of the draw θ(i). Using the fact

the a Student’s t distribution can be represented as a mixture of normal distributions with the covariance

matrices scaled by the random variables following an Inverse-Gamma distribution, one can equivalently

represent the draws θ(i) from the mixture (B.3) in (B.4) as

θ(i) ∼ N (µh, κ
(i)
h Σh), if z

(i)
h = 1,

where z(i) ∈ RH is a latent vector from the standard base with one on the place corresponding to the

component h which the draw θ(i) has been drawn from. The probability P[z(i) = eh] of belonging to the

component h is given by ηh. The scaling factor κ
(i)
h follows the Inverse-Gamma distribution

κ
(i)
h ∼ IG(νh/2, νh/2).

Such a representation introduces the latent data θ̃ = {zh, κh}Hh=1 into the logdensity log p(θ), so that

the standard numerical maximisation of the data-augmented log p(θ, θ̃|ζ) density is infeasible. To find

the optimal mixture parameters ζ one can resort to the Expectation-Maximisation (EM) algorithm of

Dempster et al. (1977), which allows for the maximum likelihood estimation for the incomplete data

problems. The core of the procedure is to iterate between two steps, the Expectation step and the

Maximisation step. In the former, one calculates the conditional expectation of the loglikelihood function

with respect to the latent variables θ̃, given the parameter values from the previous iteration, ζ. In the

latter, the expected loglikelihood is maximised with respect to the parameters.

The conditional expectations in the Expectation step are given by

z̃
(i)
h ≡ E

[
z
(i)
h

∣∣∣ θ(i), ζ] =
ηht(θ

(i)|µh,Σh, νh)∑H
l=1 ηlt(θ

(i)|µl,Σl, νl)
,

z̃/κ
(i)

h ≡ E

[
z
(i)
h

κ
(i)
h

∣∣∣∣∣ θ(i), ζ
]

= z̃
(i)
h

d+ νh

ρ
(i)
h + νh

,

ξ̃
(i)
h ≡ E

[
log κ

(i)
h

∣∣∣ θ(i), ζ]
=

[
log

(
ρ
(i)
h + νh

2

)
− ψ

(
d+ νh

2

)]
z̃
(i)
h +

[
log
(νh

2

)
− ψ

(νh
2

)]
(1− z̃(i)h ),

δ̃
(i)
h ≡ E

[
1

κ
(i)
h

∣∣∣∣∣ θ(i), ζ
]

= z̃/κ
(i)

h + (1− z̃(i)h ),

where ρ
(i)
h = (θ(i) − µh)TΣ−1h (θ(i) − µh) and ψ denotes the digamma function.
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The updates at the iteration L of the Maximisation step are as follows

µ
(L)
h =

[
N∑
i=1

w(i)z̃/κ
(i)

h

]−1 [ N∑
i=1

w(i)z̃/κ
(i)

h θ(i)

]
,

Σ
(L)
h =

∑N
i=1 κ

(i)z̃/κ
(i)

h (θ(i) − µ(L)
h )(θ(i) − µ(L)

h )T∑N
i=1 w

(i)z̃
(i)
h

,

η
(L)
h =

∑N
i=1 w

(i)z̃
(i)
h∑N

i=1 w
(i)

,

while the updates for the degrees of freedom ν
(L)
h parameters come from solving of the first-order condi-

tions with respect to νh

−ψ(νh/2) + log(νh/2) + 1−
∑N
i=1 w

(i)ξ
(i)
h∑N

i=1 w
(i)

−
∑N
i=1 w

(i)δ
(i)
h∑N

i=1 w
(i)

= 0.

A more detailed discussion of the MitISEM algorithm can be found in Hoogerheide et al. (2012).

C NAIS

The NAIS approach relies on the Gauss-Hermite quadrature based on M nodes zj and related weights

h(zj), j = 1, . . . ,M , so that the minimization problem (4.15) is deterministically approximated with

min
χt

M∑
j=1

h(zj) exp(z2j )ϕ(x̃tj), (C.1)

ϕ(x̃tj) = λ2(x̃tj , yt; θ)ω(x̃tj , yt; θ)g(x̃tj |y∗t ; θ), (C.2)

x̃tj = x̃t +
√
Vtzj .

Since x̃t and Vt are the moments of the smoothed density g(xt|y; θ) given by (4.16), the last term on the

right hand side in (C.2) becomes

g(x̃tj |y∗t ; θ) =
1√

2πVt
exp

{
−1

2
z2j

}
.

Finally, having the necessary approximation (obtained given IS parameters), the minimisation (C.1)

reduces to the weighted least squares regression, with the regressand log p(yt|x̃tj ; θ), the regressors

(1, x̃tj ,−x̃2tj/2) and the weight h(zj) exp(z2j )ω(x̃tj , yt|θ)15. The estimated coefficients corresponding to

the second and the third regressors become the updated IS parameters. These are then used to obtain the

new integral approximation, which is in turn employed in the next weighted least squares computation.

The whole iterative procedure is performed until the convergence criterion in χ is reached. To initialize

the iterations, one can set bt = 0, Ct = 1, t = 1, . . . , T .

15For numerical efficiency, the weights can be simplified to h(zj) exp(z2j ), which is referred to as the “fast” optimisation
version.
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